有人把CPU比作电脑的“心脏”,实际上,如果我们真正形象地去比较,CPU对于电脑来说更像是大脑的作用,而真正为电脑提供动力的心脏应该是为电脑提供充足电力的电源。那么让我们来关注一下这个被我们忽视的角落。
PC电源从产生到现在经历了近20年的发展,这期间不论是电源外形还是输出电压和功率以及电性能要求都有过多次变化,也先后出现过许多不同的规范和标准。至今市场上仍有许多种类的电源并存,不同类型的电源都是针对不同类型的主机设计,因此需要正确地分辨电源类型。
IBM PC/XT/AT是PC电源最早的工业标准,兼容机概念的流行使PC电源有一个相对统一的设计,也确立了+5V、+12V、-5V、-12V四组输出电压的电源总线架构。其中+5V担负了几乎所有逻辑芯片的供电,以适应已经成为工业标准的+5V TTL逻辑电平要求,+12V则主要为机内的硬盘和光驱马达供电。AT电源与主板的连接线是两条单排6芯线,分别为P8和P9。AT电源外观上最明显的标志是它的交流输入开关线,出于交流输入线的安全性要求,该线缆具有较厚的绝缘外皮,非常易于辨认。
ATX电源的出现是PC电源的一次重大变化。ATX电源中增加了+3.3V的主输出,增加了+5VSB待机输出和PS_ON#信号。+3.3V是为了部分较低功耗、逻辑电压较低的部件而设的,+5VSB和PS_ON#的增加则是为了满足PC的远程开关机、键盘开关机等新的电源管理方案的需要。电源连接主板的输出线也由原来的12芯扩充到20芯,并采用了一只双排的20芯插头。有关PC电源的设计规范也逐渐建立并完善起来,典型的是被业界接受的INTEL《ATX POWER Supply Design Guide》和《SFX POWER Supply Design Guide》。这两个标准到现在仍是PC电源设计中最主要的参照。
P4电源是目前比较受关注的电源类型,它的正式的名称是ATX12V电源。INTEL在推出其新一代Pentium4 CPU时,也相应提出了与系统变化相适应的电源标准,也就是《ATX/ATX12V POWER Supply Design Guide》。“ATX12V”被作为ATX系列电源中的“高级系列”。相比较ATX来看,ATX12V电源有以下两个明显变化:
1. 增大+12V输出能力。主板上的CPU、Chipset等有自身特定的工作电压,需要依赖VRM或是本地DC/DC来供给,随着IC功率的上升,使用+12V来为这些部分供电要比使用+5V或+3.3V易于传递更大功率并有更高的传输效率。
2. 增加了+12V输出线和接插件。为了使+12V的电流良好传输,增加了一只4芯的+12V接插头,该插头也成为ATX12V电源的外观特征。
除此之外,ATX/ATX12V系列电源的另一个变化是+5VSB输出电流的增大,是因为要适应诸如“Instantly Available PC”、“Suspend-to-RAM”等电源管理方案。
PC电源常见类型如表。
其中市场上最为多见的类型是标准AT/ATX外形的ATX和ATX12V电源,电源功率大多为200W~300W之间,我们可以根据不同主机的需要分别选取。
关键字:开关电源 PC电源
编辑:冰封 引用地址:开关电源:PC电源分析
推荐阅读最新更新时间:2023-10-18 15:16
利用PS223设计的ATX开关电源技术
以安全、可靠为第一原则,高性能大功率ATX电源设计中应用电源管理监控芯片实现防浪涌软启动以及防过压、欠压、过热、过流、短路、过温等保护功能。
SPS(Switching Power Supply)利用现代 电力 电子 技术,以小型、节能、轻量和高效率的特点被广泛应用于以 电子 计算机为主导的各种终端设备、通信设备等几乎所有的电子设备。 1 ATX电源概述与电源管理监控保护功能 Intel制定的大功率(350~900 W)ATX电源规范版本是ATXl2V 2.2,+12 V采用双路输出,其中一路+12 V(A)专为CPU供电,而另一路+12 V(B)则为其他设备供电,输出到主板的接头为24针脚,以输出两组+12 V。 高性
[电源管理]
开关电源设计的噪声降低法
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。 1 电路和器件的选择 一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关)、ZCS(零电流开关)、共振模式.(ZCS的一种)、SEPIC(单端初级电感转换器)、CK(一套磁结构,以其发明者命名)等。 减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。使用软开关技术,虽然会稍微降低效率,但在节省成 本和滤波/屏蔽所占用空间方面有更大
[电源管理]
浅谈开关电源和线性电源的区别
开关电源和线性电源的优点缺点对比及区别,都是直流电源按要求不同使用不同 ,线性直流电源最好 他输出的是线性直流电,可以用在要求高的场合,开关直流电源次之,他是由很高的开关速度的变压器和开关管,特点是重量小,容量大,输出质量高,相控电原用在要求不高,电流特大的场合线性电源,开关电源区别线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。 开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output ty
[电源管理]
从印制板到反激电源/开关电源设计
谈多年开关电源的设计心得,从开关电源印制板的设计、印制板布线、印制板铜皮走线、铝基板和多层印制板在开关电源中的应用,到反激电源的占空比,绝对的实践精华! 开关电源印制板的设计 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在
[电源管理]
一种小型直流开关电源的反馈控制电路设计
目前,在各种电子设备和现代通信设备中,为了在各种不同工作条件下满足某些要求或实现规定的一些技术指标,反馈控制电路已经被广泛应用。作为电子设备和系统中的一种自动调节电路,反馈控制电路主要作用就是当电子系统受到某种扰动情况下,系统能通过自身反馈控制电路的调节作用,对系统某些参数加以修正,从而使系统各项指标仍然达到预定精度。反馈控制电路通常由比较器、控制信号发生器、可控器件和反馈网络四部分组成一个负反馈闭合环路,如图1 所示。
图1 反馈控制电路组成示意图
本着小型化、小功率和高效率的设计思想,本文设计的反馈控制电路对应的直流开关电源主要技术要求如下:
输入交流电压:VACMIN=85V;VACMAX=265
[电源管理]
几种基本类型的开关电源工作原理
开关电源就是利用 电子 开关器件(如晶体管、场效应管、可控硅闸流管等),通过 控制 电路 ,使 电子 开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关
[电源管理]
基于MC3423的OVP反激式开关电源设计
引言
随着电力电子技术的发展。绿色、高效、智能、稳定的电源系统已成为当代电源系统发展的主流和趋势。开关电源是一种新型电源变换器。它利用变化电场产生变化的磁场,而变化的磁场又产生变化的电场,从而起到变压作用。根据电磁辐射原理,电磁辐射的能量与频率f有关,频率越高,能量越大。因此,如将变压器开关频率提高,则在相同功率下,变压器体积变小,电源效率增高;而在开关电源体积减小、效率增高的同时,又要保证电源系统输出的稳定性和安全性,这就要求在开关电源输出上必须加上保护措施,以防止过压和过流,从而保护后继用电器。
开关电源的设计通常包括电路设计和磁路设计两部分,电路的设计包括输入电路、PWM控制电路、输出电路和过压过流
[电源管理]
论电源中安规电容的重要性
不知道大家有没有过这样的经历:小时候很好奇,什么东西都想碰,去摸插座电源,结果被电到了?小编小时候就做过这样的事情,因为年纪小无知还好奇,被电到了和家长说反而还挨骂。看到这几年触摸插板结果触电而亡的新闻就觉得很揪心。现在想想就小编这个好奇心能活到现在真的不容易,还让父母担心。 电源里有不同的电子元件,打开开关电源可以看到里面有个黄色盒型电子元件和蓝色圆形电子元件,这两个电子元件就是安规电容,黄色盒型的是安规X电容,蓝色圆形的是安规Y电容。那么它们在开关电源里是做什么用的呢?那么我们先来搞清楚什么是安规电容。 安规电容是指外部电源断开后会迅速放电,人触摸不会有触电感,而且安规电容失效后,不会导致电击,不会伤害人体。而普通电容
[嵌入式]