蓄电池的单相有源逆变恒流放电控制方式的研究

最新更新时间:2011-04-29来源: 互联网关键字:逆变器 手机看文章 扫描二维码
随时随地手机看文章
0 引言

在蓄电池组维护的过程中,为了活化蓄电池和测量蓄电池的容量,必须定期对蓄电池进行放电实验。目前,国内蓄电池放电多采用电阻放电装置,虽然结构简单、成本低,但很难做到恒流放电,且无法精确计算蓄电池组的放电容量。本文提出采用双级变换电路的方法,即DC/DC变换电路和PWM整流逆变电路,研制出一种新型的蓄电池单相有源逆变回馈放电装置,并进行了相应的实验研究。实验结果表明,该装置既能实现蓄电池恒流放电,又能将蓄电池组释放的能量回馈给电网,并且使流人电网的电流为正弦渡,对电网没有谐波干扰[1]。

由于环境温度、充电方式、老化等因素的影响,蓄电池组可供使用的实际容量往往比其标称容量小得多。为了准确掌握蓄电池的真实容量,消除因蓄电池容量衰减造成后备时间缩短的隐患.必须定期进行放电实验,测量蓄电池的容量。而放电容量等于放电电流与放电时间的乘积,所以,控制蓄电池恒流放电是测量蓄电池真实容量必须解决的一个关键的技术。

l 蓄电池恒流放电控制主电路设计

图l中采用全桥移相软开关技术的DC/DC变换电路的作用是控制蓄电池恒流放电,同时将蓄电池电压变换成PWM整流逆变电路所需要的电压。其控制系统结构简图如图2所示。放电给定电流IcG与实际的放电电流Id相比较后,其误差信号经PI调节器后送入PWM控制器,再由PWM控制器产生PWM信号,该PWM信号再经驱动电路去控制DC/DC变换电路中的开关器件IGBT,便可使实际的放电电流跟踪给定电流.从而达到恒流放电的目的。当PWM整流逆变电路发生故障不能向电网回送能量时,如果直流变换电路仍然处于恒流放电工作状态,则会引起直流侧电压升高。为了防止过压的产生,在图2中引入了直流电压限压控制环,当直流侧电压高于设定值时,直流变换电路立即从恒流控制转为恒压控制。

2 全桥移相控制集成电路UC3879

PWM控制器采用全桥移相控制集成电路UC3879[2],其引脚排列如图3所示。各引脚的名称、功能和用法如下。

脚1(VREF)该引脚输出一个温度特性极佳的5V参考电源。

脚2(COMP)、脚3(EA-)误差放大器的输出端与反相输入端。

脚4(CS)过电流信号取样输入端。当该端取样信号值大于2.5V,便封锁输出的PWM脉冲。

脚5(DELAY SET C/D)该端用来设置0UTC和0UTD的输出延迟时间,使用中通过电阻接地。

脚6(SS)软起动电容连接端,电容的大小与软起动时间成正比。

脚7(OUTD)、脚8(0UTC)该两引脚输出互补的两路PWM脉冲,该两路输出在应用中接单相全桥逆变电路中一个桥臂上下开关器件的栅极驱动电路的输入端。

脚9(VDD)输出功率放大级电源端。

脚10(VIN)输入电压欠压保护输入端。

脚1l(PGSD)输出功率放大级参考地。

脚12(OUTB)、脚13(OUTA)该两引脚输出互补的两路PWM脉冲,该两路输出在应用中接单相全桥逆变电路中另一个桥臂上下开关器件的栅极驱动电路的输入端。

脚14(Cr)、脚18(m) 决定内部振荡器振荡频率的电容度电阻连接端,使用时,分别通过一个电容和一个电阻接地。

脚15(DELAY sET A/B) 该端用来设置OUTA和0UTB的输出延迟时间。使用中通过电阻接地。

脚16(UVSEL)欠电压保护门槛设置端。


脚17(SYNc)同步脉冲输入、输出端。

脚19(RAMP) 电压斜率设定端。

脚20(GND)整个芯片的参考地。

3 蓄电池恒流放电控制电路设计及工作原理
图4为直流变换电路恒流放电控制电路围。电位器P2用于设定放电电流的大小,电压Ua为电流环输出,用于控制蓄电池恒流放电;电位器P1用于设定最大输出电压的大小,电压Uc为限压环输出。正常工作时,PWM整流电路控制直流侧电压设为Ud1,直流变换电路的限压设定值为Ud2限压环的电压反馈值UDF小于设定值,从而导致限压环输出正饱和,使得电压Uc大于Ub,二极管D截止,因此,电压环不起作用。此时,电流环起作用,电压Ub随着Ua变化而变化,而UC3879的输出PWM信号的移相角的大小又由Ub的大小决定,如果放电电流有下降的趋势,则PI调节器正积分,使Un增大,从而使Ub增大,通过UC3879芯片的自动调节,使V1与V4、V2与V3之间的移相角减小,使全桥整流后的脉动直流电压增大,即DC/DC变换电路的输出功率增大,引起输入功率增大,从而使放电电流趋于恒定;当放电电流有上升的趋势时,控制电路的调节过程刚好相反。这样,通过Ub的变化便可控制输入电流保持恒定,从而达到恒流放电的目的。进行放电实验时,如果PWM整流逆变电路发生故障,不能将蓄电池释放的能量返送给电网,从而导致直流环电压升高,一旦电压升高到Ud2,此时电压环开始工作,电压Uc下降,使Ub跟随Uc变化,控制原理与恒流控制相同,最后使直流环电压恒定为Ud2图4中,CS1及CS2为图l中变压器原边电流输入端,整流后送入UC3879的限流输入端,用于限制变压器原边最大电流。控制电路的4路PWM输出信号经驱动电路后分别去驱动图l中的4个ICBT器件(V1~V4)。放电装置一旦发生故障,由保护和检测电路发出的STOP信号便立即封锁PWM信号,关断IGBT器件。


4 实验波形

采用本文所提出的蓄电池单相有源逆变回馈放电装置恒流放电的控制方法,研制出了一台新型的用于单相220V有源逆变蓄电池回馈放电的实验装置,放电电流设定范围6~30A[1]。图5给出了放电电流为20A时蓄电池放电电流波形,其中纵轴每格553mV代表电流为5A。从图5中可以看出,电流波形为直线,说明蓄电池放电为在线恒流放电。在实验的过程中,当蓄电池电压发生变化时,其放电电流保持恒定不变。


5 结语

控制蓄电池恒流放电是蓄电池放电装置必须解决的一个关键技术。本文就新型的蓄电池单相有源逆变回馈放电装置恒流放电的控制方法进行了研究,并获得了蓄电池在线恒流放电控制电路的设计方法和电路。实验结果表明,该蓄电池放电装置为恒流放电,放电电流与放电时间的乘积即为蓄电池的容量,由于放电电流保持不变,因此,只要测量蓄电池的放电时间,便可精确测量蓄电池的容量。

From:http://www.21ic.com/news/html/67/show12929.htm



置0UTC和0UTD的输出延迟时间,使用中通过电阻接地。

脚6(SS)软起动电容连接端,电容的大小与软起动时间成正比。

脚7(OUTD)、脚8(0UTC)该两引脚输出互补的两路PWM脉冲,该两路输出在应用中接单相全桥逆变电路中一个桥臂上下开关器件的栅极驱动电路的输入端。

脚9(VDD)输出功率放大级电源端。

脚10(VIN)输入电压欠压保护输入端。

脚1l(PGSD)输出功率放大级参考地。

脚12(OUTB)、脚13(OUTA)该两引脚输出互补的两路PWM脉冲,该两路输出在应用中接单相全桥逆变电路中另一个桥臂上下开关器件的栅极驱动电路的输入端。

脚14(Cr)、脚18(m) 决定内部振荡器振荡频率的电容度电阻连接端,使用时,分别通过一个电容和一个电阻接地。

脚15(DELAY sET A/B) 该端用来设置OUTA和0UTB的输出延迟时间。使用中通过电阻接地。

脚16(UVSEL)欠电压保护门槛设置端。


脚17(SYNc)同步脉冲输入、输出端。

脚19(RAMP) 电压斜率设定端。

脚20(GND)整个芯片的参考地。

3 蓄电池恒流放电控制电路设计及工作原理
图4为直流变换电路恒流放电控制电路围。电位器P2用于设定放电电流的大小,电压Ua为电流环输出,用于控制蓄电池恒流放电;电位器P1用于设定最大输出电压的大小,电压Uc为限压环输出。正常工作时,PWM整流电路控制直流侧电压设为Ud1,直流变换电路的限压设定值为Ud2限压环的电压反馈值UDF小于设定值,从而导致限压环输出正饱和,使得电压Uc大于Ub,二极管D截止,因此,电压环不起作用。此时,电流环起作用,电压Ub随着Ua变化而变化
关键字:逆变器 编辑:冰封 引用地址:蓄电池的单相有源逆变恒流放电控制方式的研究

上一篇:光伏和UPS逆变器供应最高效率的功率模块
下一篇:蓄电池的单相有源逆变恒流放电控制方式的研究

推荐阅读最新更新时间:2023-10-18 15:18

基于DSP控制的全数字UPS逆变器设计
1 引言 随着信息处理技术的不断发展,尤其是计算机的广泛应用和Internet的迅猛发展,供电系统的可靠性要求越来越高,因此对不间断电源(UPS)技术指标的要求也越来越高。UPS的核心部分是一个恒频恒压逆变器,由于传统模拟控制需要使用大量的分立元器件,老化和温漂严重影响了系统的长期稳定性。基于DSP的数字控制技术能大大改善产品的一致性,同时增加了控制的柔性,提高了整个系统的稳定性和可靠性 。本文主要提出了一种数字控制的UPS逆变器结构,详细论述了控制系统的参数设计。 2 系统结构 图1是本文提出的数字控制UPS逆变器的结构框图。主电路采用了全桥结构,控制电路是以TI公司的电机控制专用DSP芯片TMS320F240为
[嵌入式]
逆变器如何做好光伏电站的“安全管家”(防电弧火灾篇)
逆变器作为光伏电站的核心,主要作用是把光伏组件不规则的直流电,转换为正弦波交流电,同时还有过压、过流保护、绝缘阻抗保护、漏电流保护、电网电压频率异常保护等功能。随着光伏组件价格下调和效率的提升,光伏平价上网的时间越来越近,光伏开始走近千家万户,人们还希望逆变器能在系统中发挥更重要的作用,使光伏系统更稳定,更安全,收效更高。古瑞瓦特公司顺应发展潮流,经过多年研究,开发了多项实用功能,如组串监测功能、组件防PID(Potential Induced Degradation)功能,电弧故障分断器AFCI(Arc Fault Circuit Interrupters)、快速关断RSD(Rapid Shut down)等,这些技术的应用,让
[新能源]
基于单片机的小功率逆变器的设计与实现
0 引言 逆变器是将汽流电能变换成交流电能的电气装置,通常用大功率高反压电力电子器件来实现。太阳能发电中,光电池阵列所发出的电为直流电。但是,大多数用电设备的供电为交流电,所以电力系统中常需要将直流电变换成交流电的逆变器。此外,逆变器在工业控制,通信、交通等领域的应用也非常广泛。正弦脉宽调制(Sinusoidal Pulse Width Modulation,SPWM),是指以正弦波做调制波(Modulating Wa ve),以F倍于正弦调制波频率的三角波做载波(Carrier Wave),进行波形比较后产生一组幅值相等、宽度正比于正弦调制波的矩形脉冲序列,来等效正弦调制波。本文以STC12C5A60S单片机为核心,利用其
[单片机]
简单、经济实现逆变器辅助电源电路图的设计
逆变器 除了功率变换回路外,还包含了小信号部分的供电,例如PWM信号芯片的 12V 供电,运放的单电源或双电源供电,单片机的5V 或3.3V 供电等。对上述电路提供一个稳定的纯净的 电源 供电在 逆变器 中也显得很重要。 12V 电池输入的辅助电源电路 对于 12V 电池供电的 逆变器 ,一般经过一级RC 滤波给PWM 芯片如TL494、SG3525 等供电即可。需要注意的是R 的压降控制在0.5V-1V 比较合适,因为一般PWM 芯片最低工作 电压在8V 左右,为了使电池在10V 电压时还能工作,R 上的压降不能过大。还有PWM 芯片供电电压过低容易引起不工作或对功率MOS 管驱动不足。 在要求比较高的情况下可以先把 10-
[电源管理]
简单、经济实现<font color='red'>逆变器</font>辅助电源电路图的设计
简析光伏逆变器的工作原理
一、光伏逆变器工作原理- -简介 逆变指将直流电转换为交流电的过程,逆变电路指可完成逆变功能的电路,逆变器指可实现逆变功能的装置设备。光伏逆变器(又称为电源调整器),是逆变器的一种,该类逆变器常用于光伏发电系统中,故将其名曰“光伏逆变器”。光伏逆变器除直交流变换功能外,还具有自动运行、停机功能和最大功率跟踪控制功能。     二、光伏逆变器工作原理- -分类 光伏逆变器有多种不同的分类方式,根据用途的不同可分为独立型电源用逆变器和独立型并网用逆变器(根据变压器的有无,独立型并网用逆变器还可分为变压器型逆变器和无变压器型逆变器),根据波形调制方式的不同可分为方波型逆变器、阶梯型逆变器、正弦波型逆变器和组合型三相逆变器。
[新能源]
逆变器知识大全
   逆变器的概念理解     逆变器是将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。      逆变器分类详解     1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。     2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。     3.按照逆变器输出电
[新能源]
Growatt逆变器融入“千年学府”湖大光伏示范项目稳定运行
    国际能源网讯:从“千年学府”湖南大学传来消息,由古瑞瓦特新能源提供的Growatt逆变器在湖南大学光伏发电项目中保持高效运行,性能稳定!       湖大太阳能发电示范项目为30kw项目,目前已经成功运行八个月,按计划每年发电不低于45000度,能够基本实现项目周边楼层电力自给。湖大示范项目实现了千年文化底蕴与现代绿色科技的完美融合,为湖南大学师生的教学实践提供了极大便利。     项目方介绍,该项目采用薄膜组件,相对于采用常规组件,一方面能够有效控制整个项目的成本,但同时会对逆变器的性能提出更高的要求,尤其是在电压范围和如何保证薄膜组件寿命方面提出了很大的挑战。     薄膜组件的开路电压一般在80伏左右远远超出
[新能源]
以单一DSP控制多重三相逆变器
  多数新型电机控制方案均利用数字信号处理器(DSP)为电机的矢量控制提供所需的计算能力。由于矢量控制需要相当强大的处理能力和外围资源,因而迄今为止的设计经验仍主张每台逆变器和电机都拥有专门隶属于自己的DSP控制器。最近,DSP的处理能力和外围资源已提升到足以轻松控制两台电机的程度,甚至还有潜力处理更多电机。采用单一DSP控制器控制两套三相逆变器的初步实践已经表明此举可行,样板中包括实现双永磁同步电机(PMSM)驱动的完整系统及DSP接口。   使用单一DSP控制两台永磁同步电机(PMSM)的硬件实验装置包括两台电机,两块逆变板以及一块单一的D S P 开发板(TMS320F280eZdsp)。   由标量控制升级
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved