关于蓄电池组充电的认识

最新更新时间:2011-07-23来源: 互联网关键字:蓄电池 手机看文章 扫描二维码
随时随地手机看文章

1 引言
 
  本文根据我们多年从事直流系统开发设计及现场应用经验,试图对后备
蓄电池组的充电方式进行一些探讨,,希望能起到抛砖引玉的作用,研究出一种更加合理的蓄电池组充电方法。


2 现今蓄电池组充电方式存在的缺陷

  在现今大部分后备
电源(直流系统,ups等)中能量的存储都是用蓄电池组来实现的。那么作为不间断供电的最后一道保障的蓄电池组的性能就显得至关重要了。囿于半导体变流技术及成本的原因我们一直采用的充电方式是如下图所示的单充电机对整组串联蓄电池充电。



  充电机以恒压限流方式永远与电池组并联在一起,理论上当电池组容量损失后,充电机将自动补充,但在实际应用中我们发现这种系统存在以下几方面问题。
  
  首先,单体蓄电池特性存在较大差异,即便是同一批出厂的蓄电池其特性也偏差较大(在国产电池中表现的尤为突出),因此在运行中将其作为一个整体一起充放电,无法根据单电池运行参数运行状态进行充放电,势必造成某些电池过充电或欠充电,也可能引起过放电,这也是为什么
蓄电池在成组运行时普遍达不到标称寿命的重要原因之一。

  其二,在此种运行方式中检测单体蓄电池的电压、内阻是比较困难的。现在普遍采用的是单独加装蓄电池检测装置,但蓄电池检测装置又不能很好的和充电机配合。从以上两点我们可以看出在此系统中按蓄电池状态(电压、内阻、剩余容量、温度等参数)及充电曲线对蓄电池进行管理只不过是一句空话。另外单独加装蓄电池检测装置也势必造成成本的上升。

  其三,随着半导体技术的进步,高频开关电源以其体积小,重量轻,效率高,噪声小的优势大有取代传统晶闸管整流
电源的趋势,但是采用如方案一中的充电方式,因为充电机需要提供较高的充电电压和较大的输出容量,对器件和技术以及工艺要求很高,大家都知道IGBT是很难超过20KHz的,而MOS-FET如果用于大电流回路中起结压降又很大,发热量也就很大,所以限于器件及工艺原因单体高频开关电源(>20KHz)目前输出容量超过6KW是很困难的,所以大多采用小模块并联均流的运行方式,但模块数量和复杂程度的增加也就带来了可靠性的降低,为此又提出了N+1冗余备分的概念,这就陷入了一个技术上的恶性循环,头痛医头,脚痛医脚。

  其四,请大家注意由于镉镍蓄电池存在记忆效应,它并不适于此种运行方式。但因为镉镍蓄电池的高倍率放电能力,为了追求低成本我们在为数不少的此种系统中采用了镉镍蓄电池,这是错误的。因此镉镍蓄电池不适用于浮充电方式运行,我们也就不过多讨论了。


3 关于蓄电池组充电方式的一种理想的解决方案

  那么是否有一种更加完善的解决方案呢?笔者经过多次推敲思考,提出以下方案供大家探讨,称不上严密,仅仅是一种思路。其原理如下:



  大家可以看到在此系统中蓄电池的充电和检测是以每节为单位进行的,所有充电及电池检测模块都含有处理单元,自行处理充电及检测过程。所有模块均由监控单元通过通讯总线根据电池运行参数及状态统一协调进行。正常运行时每组充电模块串联形成一个整体电源为负荷供电,并且对每个蓄电池进行浮充电,当交流电源停电时蓄电池将为负荷提供电源。所有充电模块及电池采用热插拔可抽出式结构,对模块及蓄电池的更换和检修将不会影响系统的运行。在本系统中以上三方面问题将会得到很好的解决。

  首先,在本系统中单节蓄电池的充电是独立进行的,在每个充电模块完全可以结合每节蓄电池的运行参数及运行状态科学的对每解蓄电池进行充放电,避免了因蓄电池参数不一致引起过充电,欠充电,以及过放电等问题的发生,保证了电池的使用寿命。

  其二,在本系统中,每节
蓄电池的检测和充电处于同一模块中,有机的结合在一起。一方面电池检测部分可以通过控制充电部分轻易实现电池电压、内阻的检测。另一方面充电部分又可以根据检测单元测得参数(包括单电池内阻、电压、温度、PH值)对电池进行合理的充电。真正实现了按蓄电池充电曲线结合其运行状态进行管理的思路。

  其三,我们知道现在小容量高频开关电源的实现是很容易的,对器件和工艺不需要很高的要求。同时也具有很高的可靠性。大家可以对比一下在方案一中以现今普遍采用220V/10A模块比较,其输出功率为最高电压280V*10A=2800W,而在蓄电池容量超过800AH系统中我们还需要采用输出电流为20A的模块,其输出功率更高达5600W,大的输出容量自然对高频器件和制造工艺提出了更高的要求,同时使可靠性降低。

  而在方案二中以可能采用的最大电池容量来讲如采用2V/1000AH电池那么单模块容量为

  0.1C(10小时充电率)A*2.5V(蓄电池最高电压)=250W式中C为蓄电池容量,
 
  而如果采用300AH/12V蓄电池系统中,单模块容量为

  0.1C(10小时充电率)A*15V(蓄电池最高电压)=450W

  *注意超过300AH的蓄电池多为2V每节

  可以看出在方案二中单模块容量远远小于方案一中的单模块容量,所以实现起来非常容易,对器件和制造工艺没有太高要求,可靠性也就得到了提高。

  大家应该注意到本方案二中没有备分的概念,其原因之一是本身小容量充电设备的高可靠性使得它不需要备分,原因之二在于热插拔抽出式结构的采用,和二极管D*的存在在更换检修模块和电池时只是系统的电压会降低一些(在允许范围内),将不会影响系统的正常运行,因此本系统不需要额外的冗余备分。


4 成本是否会增加?

  下面我们将就大家比较关心的系统成本的问题进行一些探讨。
在方案中二模块的数量将增加很多,但是由于其容量小,其对器件和制造工艺的要求很低,以及量产的原因,较之于方案一其成本非但不会增加反而有可能下降。另外由于方案二中模块中包括蓄电池检测部分,不需要单独加装蓄电池检测装置,其成本将会进一步下降。


5 结语

  为了解决问题我提出了对
蓄电池充电方式的一点见解,新的方案的提出必然有很多不周到的地方,但技术总是要不断进步和完善的,希望各位同行给予更多宝贵意见,以使蓄电池管理的技术更加完善。

关键字:蓄电池 编辑:冰封 引用地址:关于蓄电池组充电的认识

上一篇:电池与环境的关系探讨
下一篇:蓄电池破陨塑料壳体的修复技术介绍

推荐阅读最新更新时间:2023-10-18 15:28

通信电源蓄电池温度的监测方法
通信电源蓄电池温度的监测方案 通信电源被称为通信系统的心脏,电源系统将直接影响通信系统的可靠性和稳定性。目前,通信系统电源供电大都是由不间断的蓄电池提供的,蓄电池温度过高势必影响到电池的工作效率和寿命。因此对蓄电池的工作温度进行实时的监测具有实际意义。美国APC公司的一项调查结果表明,大约有75%以上的通信系统故障都是由于电源设备故障而引起的。 议题内容: 蓄电池温度监测系统的系统组成 蓄电池温度监测系统的软硬件设计 解决方案: 电压、温湿度采集、温度采集 模块之间的通信 数据显示 系统组成 蓄电池温度监测系统的原理框图如图1所示。主要由电压、温湿度采集、温度采集、89S51单片机、键盘控制模块、显示电路模
[电源管理]
通信电源<font color='red'>蓄电池</font>温度的监测方法
矿用防爆锂离子蓄电池无轨胶轮车行业标准研讨会召开
  矿用防爆锂离子蓄电池无轨胶轮车行业标准研讨会近日召开。此次研讨会的召开,标志着国家矿用防爆锂离子蓄电池无轨胶轮车行业标准的编制工作正式启动。来自国家安标中心、冀中装备集团石煤机公司、神华集团、中天合创、中煤华晋能源公司等单位的专家参加了研讨会。   根据国家安全生产监督管理总局和国家煤矿安监局批准下达的《2014年煤炭行业标准制修订项目计划》,冀中装备集团石煤机公司、安标国家矿用产品安全标志中心、中国煤矿机械装备有限责任公司、常州科研试制中心有限公司、北方汽车质量监督检验中心共同承担了矿用防爆锂离子蓄电池无轨胶轮车行业标准的编制任务。接到任务后,石煤机公司负责牵头组织该项工作,成立了标准起草小组。小组成员分头收集了
[新能源]
技术:基于单片机的多模式蓄电池充电电路设计
引言 一个好的充电器对蓄电池的使用寿命具有举足轻重的作用,智能充电器具有操作简单、可靠性高和通用性强等优点,是充电器家族中的一个重要的组成部分,也是未来充电器发展的主要方向。所谓智能充电器是指能根据用户的需要自主选择充电方式、对不同类型的充电电池进行充电、并且在充电过程中能对被充电电池进行保护从而防止过电压和温度过高的一种智能化充电器。 充电控制器需要长时间控制并要进行电压检测,若用传统电路实现则电路复杂,采用单片机控制可大大减化电路,降低成本。本充电器用AT89C51单片机进行充电定时控制。在定时充电期间若电池电压高于另一值则停止充电。采用从涓流充电、恒流充电、恒压充电到浮充电的方法,充电完成后,自动转为浮充电, 以防止电池放
[电源管理]
技术:基于单片机的多模式<font color='red'>蓄电池</font>充电电路设计
基于DSP的蓄电池充放电装置的设计
0 引言   蓄电池作为储能电源已广泛用于各个行业中。蓄电池充电装置大多采用两级充电模式,同步采样方法,用不带滞环的PI调节器进行PI调节。对于深度放电的蓄电池,为保证正常的使用寿命,在一般的充电程序前必须增加涓流充电过程。同步采样方法存在开关管动作引起的电压和电流尖峰,从而导致系统运行不稳定。本装置采用非同步采样方法,保证了电压电流的采样值更准确,系统更加稳定。为了减少蓄电池充放电系统稳态时的噪声,提高动态响应,引入滞环PI调节器,相对于不带滞环的PI调节器,控制过程相对更为简单并且提高了系统的稳定性。本文以12V,100A·h铅酸蓄电池为例,介绍了全数字控制蓄电池充放电电路和控制方法。   1 系统主电路  
[嵌入式]
基于DSP的<font color='red'>蓄电池</font>充放电装置的设计
替代蓄电池的超级电容储能模块设计
超级电容是近几年才批量生产的一种新型电力储能器件,也称为电化学电容。它既具有静电电容器的高放电功率优势又像电池一样具有较大电荷储存能力,单体的容量目前已经做到万法拉级。同时,超级电容还具有循环寿命长、功率密度大、充放电速度快、高温性能好、容量配置灵活、环境友好免维护等优点。随着超级电容性能的提升,它将有望在小功耗电子设备、新能源利用以及其他一些领域中部分取代传统蓄电池。 本文介绍了一种基于超级电容设计的用以替代12V蓄电池的超级电容模块,通过计算分析得出模块的组合结构、最佳充电电流范围、充电时间以及总的输出能量。该模块具有寿命长,不造成污染,功率和能量密度大等优点,具有很好的开发应用前景。 一、  超级电容储能模块的设计 由于超级
[嵌入式]
天鹅蓄电池的绿色发展之路
  在起动和大型储能等应用领域,铅酸蓄电池由于技术成熟、安全性高、循环再生利用率高、价格低廉等优势,占据主导地位。随着铅酸蓄电池市场占有率的不断增加,其在生产、回收过程中存在大量的能源消耗以及每年数以亿计的电池报废所带来的严重环境污染等问题日益严峻,成为了世界各国共同关注的重点。   废旧铅酸电池中含有的铬、铅、汞、镍、锌、锰等重金属,以及废酸、废碱等电解质溶液,如不经过特殊处理任其泄露,会导致严重的水体污染和土地酸碱化。2019年,国家发改委发布《铅蓄电池回收利用管理暂行办法(征求意见稿)》,其中制定了蓄电池“谁生产,谁回收”的政策,并要求到2025年底,规范回收率达到60%以上。因此,正规的蓄电池厂商都会回收废旧蓄
[新能源]
蓄电池充电方法的研究
摘要:针对蓄电池的特点,研究了蓄电池充放电过程中的极化现象,提出和分析了几种充电方式,并展望了其发展前景。 关键词:蓄电池;充电;极化 引言 铅酸蓄电池由于其制造成本低,容量大, 价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1 蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出
[电源管理]
基于AVR微控制器的蓄电池充放电控制器的设计
摘要: 针对539CH-1型Ni-Cd电池,提出一种基于 AVR 微控制器的蓄电池充、放电控制器。该控制器以Mega16L为核心,根据上位机的命令控制蓄电池的充、放电电流值以及放电电阻的接入时机。 关键词: 蓄电池; AVR 微控制器;TLV5638;电源控制 引言   蓄电池是飞行器电源系统中重要的组成部分,蓄电池的性能直接影响飞行器的安全。因此,正确维护、保养蓄电池就成为一项十分重要的工作。539CH-1型Ni-Cd蓄电池是法国SAFT公司生产的碱性蓄电池,该电池包含20个单体电池,额定电压24V,额定容量53Ah。波音737客机即采用该型蓄电池。   充电和放电是该电池维护、保养中的主要工作。由
[单片机]
基于AVR微控制器的<font color='red'>蓄电池</font>充放电控制器的设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved