基于DSC的数字脉冲MIG弧焊逆变电源设计

最新更新时间:2011-08-02来源: 电源技术 关键字:DSC  数字脉冲  逆变电源设计 手机看文章 扫描二维码
随时随地手机看文章
   脉冲MIG(Metal Inert Gas)是一种熔化极惰性气体保护焊。数字脉冲MIG焊机具有诸多优点,在制造工业中占有重要地位。研制弧焊逆变电源具有重要意义。

    弧焊逆变电源自上世纪80年代问世以来,经过不断的发展完善,已成为焊接电源的主流产品。弧焊逆变电源的逆变频率一般在20~100kHz,由于目前的逆变电源多采用模拟电路控制,限制了逆变电源性能的提高。焊机的数字化是当今焊接装备发展的潮流,它使得数字控制应用于弧焊逆变电源成为可能。在国内,数字化焊机的研究尚处于起步阶段,较之世界先进水平仍有很大的差距。这使我们研究弧焊逆变电源有了很大的必要。

    1 电源主电路设计
    1.1 系统概述
   
脉冲MIG焊是一种焊接电流周期性变化的熔化极惰性气体保护焊,它对焊接设备要求较高。主电路的开关频率要高,响应速度要快,动态响应性能要好,输出电流波纹要小,要能适应多种焊接材料、多种焊丝直径在不同条件下的焊接需求。如图1所示,脉冲MIG焊机主要由6个部分组成。


    1.1.1 主回路
    主回路是系统的功率变换电路,其功能是将电网上的380V的三相交流电整流并进行中频桥式逆变,经再次整流后输出,输出电流可达450~500A。
    1.1.2 驱动电路
   
驱动电路具有保护功能,防止出现过流、过热等情况。驱动逆变回路中的绝缘栅型大功率晶体管(IGBT)对触发脉冲要求严格,其开关损耗也与触发脉冲的斜率、幅度等密切相关。
    1.1.3 主控板电路
   
主控板电路是焊机控制的核心部分。在控制上使用了变参数电流闭环PI控制和电压闭环PI控制。系统通过D/A变换送到驱动板的模拟输入口,经驱动IGBT输出。控制的反馈量是最终输出的电压和电流的采样值。
    1.1.4 送丝机电路
   
送丝机通过调节送丝电机的转速实现焊机焊接的匀速或变速送丝。送丝机电路通过控制电磁阀实现保护气体的通断。
    1.1.5 焊机面板
   
焊机面板是焊机和用户交互的接口。用户可以通过面板来观察和设置焊机的工作模式、焊机的状态、焊丝和保护气体的类型等。
    1.1.6 遥控盒
   
当用户离焊机较远时,可以通过遥控盒来代替控制面板的功能以实现远程控制。

    1.2 主电路设计
   
系统的主电路的结构如图2所示,工作在软开关方式,采用了改进的移项谐振电路。


    逆变部分N1、N3为超前桥臂,N2、N4为滞后桥臂。C1、C3为超前臂的并联电容,C2、C4为滞后臂的并联电容,且C1=C3>>C2=C4。L2为饱和电感,Cs为环流抑制串联电容。T1为主变压器。“+”、“-”为焊枪输出。S1为空气开关,电网电压经整流和Cp、L1稳压后为逆变提供直流输入。

2 电源控制系统设计
2.1 脉冲MIG弧焊电源控制系统总体方案
   
脉冲MIG弧焊控制系统的总体设计是系统设计的关键,它涉及到自动控制、计算机及焊接等领域。
    该电源控制系统的总体方案如图3所示。脉冲MIG弧焊电源控制系统共有三个部分:电流波形控制系统、弧长控制系统、专家系统。其中电流波形控制系统、弧长控制系统为闭环控制系统,且弧长控制系统的输出为电流波形控制系统的输入,故整个系统为双闭环控制系统,电流波形控制为内环,弧长控制为外环。专家系统为整个双闭环系统的调节部分。


2.2 控制系统各部分方案设计
2.2.1 电流波形控制系统

    为了实现对电流波形控制的精确性,本系统应当采用PID控制。由于理想微分控制对于强扰动反应较快,而电弧的热惯性使得系统不能及时地响应微分控制。此外理想微分控制会使偏差信号e(t)中的噪声干扰放大,产生较大的噪声输出,影响系统性能。故本系统采用了变参数的PI控制器。对于脉冲MIG焊而言,一脉一滴的过渡形式是所有过渡形式中焊接质量中最好的,此时熔滴的大小与焊丝直径相当,因此熔滴过渡较好的控制思想是控制波形的形状,保证熔滴的大小一致。波形控制决定着单个熔滴的行为特性。在熔滴过渡的一个周期里,熔滴的过渡中可以分为6个阶段,在这几个阶段中,分别采用不同的比例系数和积分时间,从而获得较好的系统动态响应速度和基值电流时间的稳态精度。电流波形控制系统的框图如图4所示。


2.2.2 弧长控制系统
    焊接电弧弧长的稳定性主要取决于两个方面:一是电弧的自身调节作用;二是焊接参数及所选择的工艺方法。传统电弧控制方法由于其弧压控制器的参数选择要考虑兼顾整个送丝速度范围,因此只能保证在某一区间弧长控制效果最佳。另外希望弧长调节过程能快速、稳定地进行。考虑到传统PID控制的不足,且目前模糊控制已经较为成熟,故本系统采用模糊控制器来进行弧压反馈部分的设计。
    首先将每个脉冲以峰值为起点,以100μs为采样周期进行采样并计算平均电压,并将得到的平均电压与给定电压值比较,从而得到电压偏差与电压偏差的变化率,然后根据焊工经验,设计模糊控制器,输入量为电压偏差和电压偏差的变化率,经过模糊推理和解模糊得到下一个脉冲的基值时间,将计算得到的基值时间送到电流波形控制部分以修改电流控制波形,从而调整熔化速度,使得脉冲的平均电压与给定电压相等。按此思想设计的弧长控制系统的框图如图5所示。


2.2.3 专家控制系统
   
专家系统是一种模拟人类专家解决特定领域问题的计算机程序系统。焊接专家系统内部含有大量的焊接领域的专家水平的知识与经验,能按照焊接专家的知识解决焊接领域参数调整与配合问题。焊接专家系统属于分析型专家系统,解决的是分类问题。通常对分类问题所进行的操作是解释操作。解释操作主要是识别操作。焊接专家系统中要识别出工况,根据输入从专家系统数据库中获得相应的解,这个解可能不唯一,也可能是错误的,经过推理机对解进行筛选,得到最优的解。以下是具体的工作过程:
    首先在焊机显示面板上,由焊工选择焊接条件,包括焊接材料、母材类型、母材牌号、母材厚度、焊丝直径、保护气体、送丝速度等。同时采取适当的措施使得相互之间有关联的条件不出现矛盾,并对输入的条件进行合法性检查。然后根据所选的焊接条件由专家系统经过推理确定电流控制波形的参数。最后确定电弧控制部分的给定电压。同时为了实现保存焊接规范,设计了知识获取机。
    专家系统框图如图6所示。


    3 系统软件设计
    脉冲MIG逆变焊机是一个复杂的多处理器系统。其软件设计包括主控板上MC56F8523 DSC的程序设计、主控板MC9S12DP256单片机的焊接专家系统程序设计、送丝机上MC9S08GT60单片机的软件设计、面板以及遥控盒上AT89C51单片机的软件设计。
    每个子系统的软件都实现焊机的部分功能,各个子系统之间通过RS-485总线进行通讯,由MC9S12DP256进行调度。主控板上的DSC主要完成焊接过程的控制,包括电流闭环盒电压闭环的控制。该系统软件采用模块化设计,使得程序结构清晰,便于系统结构扩展。
    本文给出焊接控制程序设计。该部分程序为系统的主要部分,直接控制焊机的动作。程序流程图如图7所示。


    4 结语
    本文较系统地介绍了基于DSC+MCU的MIG弧焊电源控制系统的设计,并提出了模糊控制在DSC上的实现。实践证明,该系统工作稳定,有很好的性能指标,完成了设计系统的要求。

关键字:DSC  数字脉冲  逆变电源设计 编辑:探路者 引用地址:基于DSC的数字脉冲MIG弧焊逆变电源设计

上一篇:基于 UC3844的反激稳压电源的设计及分析
下一篇:基于转换器AX6066+A433的LED驱动电源设计

推荐阅读最新更新时间:2023-10-18 15:31

基于AVR单片机的逆变电源设计及EMC分析
简介:本文介绍了一套逆变电源系统的设计方案,该逆变电源采用高性能AVR单片机为核心控制芯片,对逆变电源系统中的各硬件电路进行分析设计,并结合模糊自适应控制和数字PI控制各自的优点,给出一套基于模糊自适应整定PI控制的双闭环控制系统模型,以确保逆变电路的可靠性。并通过电磁干扰的三要素:干扰源、传输途径和敏感设备对此电源的EMC情况进行了测试分析。 1引言 近些年来,随着现代工业和电力电子技术的发展,逆变电源应用面已越来越广泛,其工作的稳定性、输出性能的好坏以及工作效率的高低直接影响到逆变系统的性能和使用领域。而随着电力电子技术和控制理论技术的快速发展,传统的单独采用SPWM调制方式已无法满足高性能逆变电源的高稳态精度输出。因
[单片机]
基于AVR单片机的<font color='red'>逆变</font><font color='red'>电源设计</font>及EMC分析
基于FPGA的数字脉冲压缩系统实现
   0 引言   脉冲压缩体制在现代雷达中被广泛采用,通过发射宽脉冲来提高发射的平均功率,保证足够的作用距离;接收时则采用相应的脉冲压缩算法获得脉宽较窄的脉冲,以提高距离分辨力,从而能够很好地解决作用距离和距离分辨力之间的矛盾问题。   线性调频(LFM)信号通过在宽脉冲内附加载波线性调制以扩展信号带宽,从而获得较大的压缩比。所需匹配滤波器对回波信号的多普勒频移不敏感,因此LMF信号在日前许多雷达系统中仍在广泛使用。   本文基于快速傅里叶IP核可复用和重配置的特点,实现一种频域的FPGA数字脉压处理器,能够完成正交输入的可变点LFM信号脉冲压缩,具有设计灵活,调试方便,可扩展性强的特点。    1 系统
[嵌入式]
基于FPGA的<font color='red'>数字</font><font color='red'>脉冲</font>压缩系统实现
介绍基于ATmega8单片机控制的正弦波逆变电源设计
  0引言   在风电行业中,经常需要在野外对风机进行维修,这时必须为各类维修工具和仪器进行供电。因此,设计一种便携式。低功耗。智能化的正弦逆变电源来为这些设备供电是十分必要的,可大大提高维修风机的效率。   本文正是基于这种情况下而设计的一种基于单片机的智能化正弦逆变电源。   1 正弦逆变电源的设计方案   本文所设计的逆变器是一种能够将DC 12V直流电转换成220V正弦交流电压,并可以提供给一般电器使用的便携式电源转换器。目前,低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是在交通运输。野外测控作业。机电工程修理等无法直接使用市电之处,低压小功率逆变电源便成为必备的工具之一,它只需要具有一块功率足够的电池与它连接,
[电源管理]
介绍基于ATmega8单片机控制的正弦波<font color='red'>逆变</font><font color='red'>电源设计</font>
助力逆变电源设计
电动车由于储能设备容量有限,在运行过程中对电能流向管理十分严格。精确的电能管理可以延长车辆运行里程,减少电池充电频率,从而节约运行成本。车载能量管理系统需要随时监控电池电压、电机输出功率以及其它设备的用电情况。同时,电动车电子控制系统的动态信息必须具有实时性,各子系统需要将车辆的公共数据实行共享,如电机转速、车轮转速、油门踏板位置等。但不同控制单元的控制周期不同,数据转换速度、各控制命令的优先级也不同,因此需要一种具有优先权竞争模式的数据交换网络,并且本身具有极高的通信速率。此外,作为一种载人交通工具,电动汽车必须具有极高的运行稳定性,整车通讯系统必须具有很强的容错能力和快速处理能力。 德国Bosch公司为了解决现代车辆中众多
[嵌入式]
光伏逆变电源设计中你该掌握的8个关键点
网络上关于光伏逆变电源系统的设计种类繁多,设计者们可以根据不同的需要进行阅读学习,但有时根据这些资料设计出的成品却不能顺利运行,或者无法达到预期的效果。即便按照参考资料进行反复研究也无法发现错误点。其实,网络上的资料虽然可能不存在较为明显的错误,但其中却缺少一些关键的知识点。 在本篇文章当中,为大家整理了关于光伏逆变系统的一些小知识细节。希望大家在阅读后能从中有所收获。 1、光伏电池是高电阻的电流源,蓄电池是低电阻的电压源。这就直接解释了我们可以短路组件,但是千万不能短路蓄电池。 2、当电池被遮盖后,等于变成了一个客观的大电阻,如果不引流会迅速发热。这也是组件和旁路二极管激活切换的根本原理。 3、STC(standard tes
[新能源]
整合MCU和DSP优势的DSC推动绿色革命
数字信号控制器(DSC)是一种集微控制器(MCU)和数字信号处理器(DSP)专长于一身的新型处理器。与MCU一样,DSC具有快速中断响应、提供面向控制的外设(如脉宽调制器和看门狗定时器)、用C编程等特性。DSC还集成了诸如单周期乘累加(MAC)单元、桶式移位器(barrel shifter)和大的累加器等功能。 DSC适合多种应用,但主要领域还是马达控制、电源转换和传感器处理。在这些应用中使用DSC的主要动机是降低功耗。采用DSC来降低功耗的最显著成果来自将变速马达转为恒速马达。变速驱动(需DSC提供的DSP马力来实现)的能耗大约只相当恒速驱动的一半。 节能潜力巨大 由于恒速驱动的应用广泛,因此,变速驱动具有广阔
[焦点新闻]
基于ARM Cortex-M3和DSP的逆变电源设计
引 言 在电气智能化发展无处不在的今天, 无数用电场合离不开逆变电源系统( Inverted Pow er Supply System,IPS) 为现场设备提供稳定的高质量电源, 特别在如通信机房、服务器工作站、交通枢纽调度中心、医院、电力、工矿企业等对电源保障有苛刻要求的场合。许多IPS产品因遵循传统设计而不符合或落后于现代电源理念,突出表现为控制模块的单一复杂化, 控制器芯片落后且控制任务繁重, 模拟闭环控制而得不到理想的监控和反馈调节效果,并由此带来单个控制设备软硬件设计上的隐患, 这对IPS 电源输出造成不利影响, 甚至对用电设备因为供电故障而导致灾难性后果。数字化控制技术日趋成熟,而且在某些领先理念的电源设备控制应
[单片机]
基于ARM Cortex-M3和DSP的<font color='red'>逆变</font><font color='red'>电源设计</font>
DSP的线性调频信号的数字脉冲压缩
  线性调频信号具有抛物线式的非线性相位谱,能够获得较大的时宽带宽积;与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟;所用的匹配滤波器对回波信号的多卜勒频移不敏感,因而可以用一个匹配滤波器处理具有不同多卜勒频移的回波信号.这将大大简化信号处理系统,因此它在工程中得到了广泛的应用.采用这种信号的雷达可以同时获得远的作用距离和高的距离分辨率.数字化的脉冲压缩系统具有性能稳定、受干扰小、工作方式灵活多样等优点,是现代脉压系统的发展趋势.   本文以TI公司的高性能的TMS320C6701浮点DSP芯片作为实现数字脉冲压缩的核心器件,实现了线性调频信号的频域数字脉冲压缩.   1 数字脉冲压缩原理
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved