基于 UC3844的反激稳压电源的设计及分析

最新更新时间:2011-08-02来源: 电源技术关键字:UC3844  反激稳压电源  设计  分析 手机看文章 扫描二维码
随时随地手机看文章
    随着现代科技的飞速发展,功率器件也不断更新,PWM技术的发展也日趋完善,开关电源正朝着小、轻、薄的方向发展。由于反激变换器具有电路拓扑简单、输入电压范围宽、输入输出电气隔离、体积重量小、成本低、性能良好、工作稳定可靠等优点,被广泛应用于实际变换器设计中。以前大多数开关电源采用离线式结构,一般从辅助供电绕组回路中通过电阻分压取样,该反馈方式电路简单,但由于反馈不是直接从输出电压取样,没有与输入隔离,抗干扰能力也差,所以输出电压中仍有2%的纹波,对于负载变化大和输出电压变化大的情况下响应慢,不适合精度较高或负载变化范围较宽的场合。下面的设计采用可调式精密并联稳压器TL431配合光耦构成反馈回路,达到了更好的稳压效果。

    1 UC3844芯片的介绍

   
UC3844是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,由该集成电路构成的开关稳压电源与一般的电压控制型脉宽调制开关稳压电源相比具有外围电路简单、电压调整率好、频响特性好、稳定幅度大、具有过流限制、过压保护和欠压锁定等优点。其内部电路结构如图1所示。


    该芯片的主要功能有:内部采用精度为±2.0%的基准电压为5.00V,具有很高的温度稳定性和较低的噪声等级;振荡器的最高振荡频率可达500kHz。内部振荡器的频率同脚8与脚4间电阻Rt、脚4的接地电容Ct的关系如式(1)所列,即


其内部带锁定的PWM(Pulse Width Modulation),可以实现逐个脉冲的电流限制;具有图腾柱输出,能提供达1A的电流直接驱动MOSFET功率管。

2 电源的设计及稳压工作原理
   
单端反激变换器,所谓单端,指高频变压器的磁芯仅工作在磁滞回线的一侧,并且只有一个输出端;反激式变换器工作原理,当加到原边主功率开关管的激励脉冲为高电平使MOSFET、开关管导通时,整流后的直流电压加在原边绕组两端,此时因副边绕组相位是上负下正,使整流二极管反向偏置而截止,磁能就储存在高频变压器的原边电感线圈中;当驱动脉冲为低电平使MOSFET开关管截止时,原边绕组两端电压极性反向,使副边绕组相位变为上正下负,则整流二极管正向偏置而导通,此后储存在变压器中的磁能向负载传递释放。
    图2中MOSFET功率开关管的源极所接的R12是电流取样电阻,变压器原边电感电流流经该电阻产生的电压经滤波后送入UC3844的脚3,构成电流控制闭环。当脚3电压超过1V时,PWM锁存器将封锁脉冲,对电路启动过流保护功能;UC3844的脚8与脚4间电阻R16及脚4的接地电容C19决定了芯片内部的振荡频率,由于UC3844内部有个分频器,所以驱动MOSFET功率开关管的方波频率为芯片内部振荡频率的一半;图3中变压器原边并联的RCD缓冲电路是用于限制高频变压器漏感造成的尖峰电压。变压器副边整流二极管并联的RC回路是为了减小二极管反向恢复期间引起的尖峰。MOSFET功率管旁边的RCD缓冲电路是为了防止MOSFET功率管在关断过程中承受大反压。缓冲电路的二极管一般选择快速恢复二极管,而变压器二次侧的整流二极管一般选择反向恢复电压较高的超快恢复二极管。


    电路的反馈稳压原理:(输出电压反馈电路如图4所示),当输出电压升高时,经两电阻尺R6、R7分压后接到TL431的参考输入端(误差放大器的反向输入端)的电压升高,与TL431内部的基准参考电压2.5 V作比较,使得TL431阴阳极间电压Vka降低,进而光耦二极管的电流If变大,于是光耦集射极动态电阻变小,集射极间电压变低,也即UC3844的脚1的电平变低,经过内部电流检测比较器与电流采样电压进行比较后输出变高,PWM锁存器复位,或非门输出变低,于是关断开关管,使得脉冲变窄,缩短MOSFET功率管的导通时间,于是传输到次级线圈和自馈线圈的能量减小,使输出电压Vo降低。反之亦然,总的效果是令输出电压保持恒定,不受电网电压或负载变化的影响,达到了实现输出闭环控制的目的。
    此设计中,输出电压通过两电阻分压并经TL43 1的内部误差放大器后,经过光耦接UC3844的误差放大器的脚1,而反向输入端脚2直接接地,输出电压反馈直接联接到脚1,而不是脚2,略过了UC3844的内部误差放大器,这使得电源的动态响应更快,因为放大器用作信号传输时有一定的传输时间,输出与输入并不是同时建立,不用UC3844内部误差放大器,把反馈信号的传输缩短了一个放大器的传输时间,从而电源的动态响应更快。


3 电源的参数设计及损耗分析
3.1 变压器原边电感设计
3.1.1 MOSFET开关管工作的最大占空比Dmax


式中:Vor为副边折射到原边的反射电压,当输入
    为AC 220V时反射电压为135V;
    VminDC为整流后的最低直流电压;
    VDS为MOSFET功率管导通时D与S极间电压,一般取10V。
3.1.2 变压器原边绕组电流峰值IPK
   
变压器原边绕组电流峰值IPK为


    式中:η为变压器的转换效率;
    Po为输出额定功率,单位为W。
3.1.3 变压器原边电感量LP


   
式中:Ts为开关管的周期(s);
    LP单位为H。
3.1.4 变压器的气隙lg


式中:Ae为磁芯的有效截面积(cm2);
    △B为磁芯工作磁感应强度变化值(T);
    Lp单位取H,IPK单位取A,lg单位为mm。
3.2 变压器磁芯
   
反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为


式中:AQ为磁芯窗口面积,单位为cm2;
    Ae为磁芯的有效截面积,单位为cm2;
    Po是变压器的标称输出功率,单位为W;
    fs为开关管的开关频率;
    Bm为磁芯最大磁感应强度,单位为T;
    δ为线圈导线的电流密度,通常取200~300A/cm2,
    η是变压器的转换效率;
    Km为窗口填充系数,一般为0.2~0.4;
    KC为磁芯的填充系数,对于铁氧体为1.0。
    根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。
3.3 变压器原副边匝数
3.3.1 变压器原边匝数NP


式中:△B为磁芯工作磁感应强度变化值(T),
    Ae单位为cm2,
    Ts单位为s。
3.3.2副边匝数Ns


式中:VD为变压器二次侧整流二极管导通的正向压降。
3.4 功率开关管的选择
   
开关管的最小电压应力UDS


    一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。
3.5 变压器损耗
3.5.1 绕组铜耗计算
   
绕组电阻值R为


式中:MUT为平均每匝导线长度(cm);
    N为导线匝数;
   为20℃时导线每cm的电阻值(μΩ)。
    绕组铜耗PCU为


    原、副边绕组电阻值可通过式(10)求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。
3.5.2 磁芯损耗
   
磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC为


式中:Pb为在工作频率、工作磁感应强度下单位质量的磁芯损耗(W/kg);
    Gc为磁芯质量(Kg)。
    对于单极性开关变压器,由于磁芯工作于磁滞回线的半区,所以磁芯损耗约为双极性开关变压器的一半。
    变压器总损耗为总铜耗与磁芯损耗之和。

    4 实验结果及波形

   
实验具体参数要求如下:输入单相AC 220V(180~240V),输出电压为24V,输出额定功率为72W,开关频率为20kHz。
    实验结果如表1所列。图5为AC 220V输入且满载时MOSFET功率管驱动波形及电流检测电阻端电压波形,图6为220V输入时满载输出电压波形,图7为AC 220V输入时MOSFET功率管的DS极间电压波形。


    从表1及波形可以看出输出电压平均值为24V,电压调整率小于0.1%,负载调整率最大为0.4%。可见,UC3844的脚6产生的方波直接驱动MOSFET功率管,实现了PWM控制。此设计电源的稳定性能较高,但从波形看出电流检测电阻端电压波形有尖峰,说明MOSFET功率管开关瞬间对变压器还有一定的冲击。

    5 结语

   
电流控制型PWM芯片UC3844是一种高性能的固定频率电流型控制器,可以产生PWM脉冲直接驱动MOSFET功率管,并具有外围电路简单、安装与调试方便、性能优良等优点。本文提出了使用UC3844、TL431及光耦等构成的单端反激开关电源,直接从输出电压进行反馈,且电压反馈直接接UC3844内部误差放大器的输出端。该设计输出与输入隔离,反馈回路动态响应快,稳压控制精度高,比较适合用于小功率变换器的设计中。

关键字:UC3844  反激稳压电源  设计  分析 编辑:探路者 引用地址:基于 UC3844的反激稳压电源的设计及分析

上一篇:基于TPS54310的SOC电源电路设计
下一篇:基于DSC的数字脉冲MIG弧焊逆变电源设计

推荐阅读最新更新时间:2023-10-18 15:31

适用于单节或两节电池供电的便携式应用的完整电池组设计
引言         尽管电压测量已经单独被用于许多便携式产品估算电池的剩余电量,但是这种方法可能存在高达 50% 的误差。电池电压和电量之间的关系会随放电率、温度和电池老化程度而有所不同。例如,相比相同电量损耗的低放电率,高放电率会带来更大的压降。当电池在不同温度下放电时,我们会注意到一些类似的特征。        随着对长运行时间产品的需求不断增长,系统设计人员需要一款更为精确的解决方案。在一个宽范围的应用功率级中, 使用电池电量监测计 IC 来测量流入或流出电池的电荷,将得到一种更好的电池电量估算方法。 电池电量监测计原理        电池电量监测计就是一种自动监控电池电量的 IC,其向做出系统电源管理决定的处理器
[电源管理]
适用于单节或两节电池供电的便携式应用的完整电池组<font color='red'>设计</font>
针对HVAC空调调速参考设计解读
一直以来,德州仪器在电源领域占据着市场主要地位,包括C2000控制器、驱动器以及模拟信号链等产品的广泛组合。同时,TI也推出了诸多参考设计,通过其强大的软硬件参考,为客户提供一站式服务。 一个例子是TI推出的HVAC空调调速参考方案,该方案集成了TI如下多款器件: 包括C2000实时控制器、TLV9062运放、UC27517A门极驱动、TLV76733 LDO、UCC28740反激控制器、TL7407L低边驱动等。 如框图所示,其中TMS320F280025C C2000实时控制器是主控制器:该产品是100MIPS 32位浮点CPU、可以实时处理包括FPC以及电机驱动功能、并且集成了多种模拟外设,尤其是多I/O的ADC
[电源管理]
针对HVAC空调调速参考<font color='red'>设计</font>解读
分析2440test中的中断处理部分
这个 2440test里面的中断写的向量有些隐蔽,兜了很多个圈,也难怪这么难理解,下面 就对这个东西抽丝剥茧,看清楚这究竟是一个怎么样的过程。 中断向量 b HandlerIRQ ;handler for IRQ interrupt 很自然,因为所有的单片机都是那样,中断向量一般放在开头,用过单片机的人都会很熟悉 那就不多说了。 异常服务程序 这里不用中断(interrupt)而用异常(exception),毕竟中断只是异常的一种情况,呵呵 下面主要分析的是 中断异常 说白了,就是我们平时单片机里面用的中断!!!所有有器件 引起的中断,例如TIMER中断,UART中
[单片机]
家庭防盗自动报警系统设计
随着微电子技术和计算机技术的发展,以及数据采集与处理技术的日益成熟,包括各种传感器向温度、湿度、红外或者烟雾传感器的大面积使用,给家庭防盗系统的设计提供了便利。通过这些新技术的组合和应用,可以实现一些家庭防盗需求。 随着3G网络在全国范围内的大规模使用,3G网络的高容量带宽为各种数据业务的应用提供了物质基础。文中设计系统直接查看家中的监控画面,就是在3G网络中完成的。而普通的语音和文字报警信息则是既可以通过传统的2G网络也可以通过3G网络。 1 问题背景 随着物质生活水平的提高,人们对于居住环境的安全、方便、舒适提出了越来越高的要求。以往保护家庭安全的做法是安装防盗门、防盗网,既不美观,又不符合防火要求,而且并不能有效防
[单片机]
家庭防盗自动报警系统<font color='red'>设计</font>
基于模糊控制的远程康复信息采集系统设计
   1 引言   远程康复是一项现代信息及通信技术与康复医学相结合的多学科交叉课题,它可以被定义为:在综合运用通信、远程感知、远程控制、计算机、信息处理等技术的基础上,实现的远方康复医疗服务。   国外在此方面的研究出发点各有不同,归纳起来,主要是将远程康复系统当作一种通信手段,来消除辅助器具评价专家与远方残疾人士之间的空间障碍,对如何把远程康复系统本身作为一种辅助器具评价诊断系统,促进康复医学的发展等方面,虽有所提及,但尚未作实质性研究。国内在这方面的产品,仅见深圳残联自行研制开发的全国第一个残疾人远程康复系统的报导,该系统着眼于专家和病人的沟通与交流,使残疾人在网上可以向专家进行康复咨询,得到康复方面的建议。
[测试测量]
基于模糊控制的远程康复信息采集系统<font color='red'>设计</font>
一种实用的LED大屏幕显示电路的设计
概 述     LED大屏幕显示系统具有画面直观、内容灵活多变、造价便宜等特点,因此被广泛应用于公共场合的文字及简单图像信息的显示。由于LED大屏幕的像素多,为节省硬件常采用动态扫描方式。以逐行扫描为例,显示过程一般为:(1)把显示缓存中的一行内容送入显示器锁存;(2)点亮该行并延时;(3)行消隐,然后指针下移一行并重复上述过程。对于小型的LED显示系统来说,这种方法是可行的,但对大屏幕来说随着像素的增加,数据传输将占用大量的时间,屏幕的显示亮度会明显下降,特别是对于户外的大屏幕显示系统,再采用这种方法设计将更是无法达到实用的效果。本文介绍一种新颖的显示控制电路可以有效地解决这一难题。 1、控制电路的组成及工作原理    
[嵌入式]
紧凑型全桥DC-DC隔离电源设计实例
新型 电力 电子 器件 IGBT 作为功率变换器的核心器件,其驱动和保护 电路 对变换器的可靠运行至关重要。集成驱动是一个具有完整功能的独立驱动板,具有安装方便、驱动高效、保护可靠等优点,是目前大、中功率IGBT驱动和保护的最佳方式。集成驱动一般包括板上DC-DC隔离 电源 、PWM信号隔离、功率放大、故障保护等4个功能电路,各功能电路之间互相配合,完成IGBT的驱动及保护。输入电源为板上原边各功能电路提供电源,两路DC-DC隔离电源输出分别驱动上、下 半桥 开关管 ,同时为IGBT侧故障检测和保护电路提供电源,因此集成驱动板上电源是所有电路工作的前提和基础。 文中的半桥IGBT集成驱动板需要两组隔离的正负 电压 输出,作为IGB
[电源管理]
紧凑型全桥DC-DC隔离电源<font color='red'>设计</font>实例
基于STM32的智能加油系统设计方案
毕设介绍 针对当前汽车加油需求的日益增多,基于STM32开发技术和传感器技术开发一款智能加油系统。 题目要求 智能加油系统应具备油量控制、根据油费计价、加油环境检测的功能。该系统能模拟汽车加油的全过程,并具备远程控制功能。 题目分析 本次毕业设计是智能加油系统的设计与实现,设计所包含的模块主要有oled显示电路、电磁阀驱动电路、可燃气体传感器模块、ds18b20数字温度传感器、蜂鸣器报警模块、WIFI模块、按键电路模块及电源模块。 通过模块之间的配合实现智能加油系统,一旦有温度异常或可燃气体浓度超标将会通过wifi模块对管理人员发出警告。 stm32f103c8t6实时采集ds18b20温度传感器获取温度,如果温度
[单片机]
基于STM32的智能加油系统<font color='red'>设计</font>方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved