边缘速率控制
为了放大音频信号,D类放大器的输出(或各种输出,以不同的配置) 在两个电源轨(通常为正极和接地)之间交替切换,其频率是所需放大的最高音频频率的10倍或更高(可能为300kHz或更高)。开关信号是经过调制的,从而通过简单的、有时是扬声器本身包含的低通滤波器来恢复音频信号。此开关转换一般速度非常快——也许是2ns或更短——因而包含显着的高频能量。这会导致互连导线缆产生EMI辐射,尤其是在信号路径中无低通滤波器,且放大器和扬声器之间的导线长度非常明显的情形下(也许超过1cm)。
用于缓减EMI辐射的一个方法是减低放大器输出的转换速率(slew rate)。图1所示为时域中的一个例子,其上方迹线有2ns的上升和下降时间,而下方迹线有20ns的上升和下降时间。
转换速率的减小(这里的因数为10) 对于D类放大器产生的辐射能量有着显着的影响。图2 显示了两种波形的频谱,此时D类输出正处于静默(无音频,占空比=50%),开关频率为333kHz。可以看到贯穿于30MHz~1GHz之间的大部分频谱,其高频(HF)内容减少约20dB。在包含有FM广播接收电子设备(88MHz ~ 108MHz)手机或无线互联网电路(700MHz ~ 2.7GHz)的系统中,这可大幅减少EMI,从而降低了可能影响系统性能的风险。
扩频时钟
上述讨论的边缘速率控制(ERC)是一个有效的方法,可减弱在30MHz以上频率范围产生的EMI (也受限于FCC法规的限制),而D类放大器开关输出的基本载波频率和其落在30MHz以下范围的相关奇次谐波(方波),则不太好采用这项技术来处理。图3所示为此频带出现的由传统的、未修改的D类放大器输出产生的能量。
为了减小D类输出频谱中的基音和泛音尖峰高度,可以在放大器的时钟电路中加入少量频率调制——也许调制指数在±5%左右,不会影响所放大音频信号的质量。针对调制信号源的特性有许多选择,一个常规作法是使用带有重复频率(全模式重复频率)的伪随机模式,其超出最高预期音频信号频率(通常为20kHz)一个适当的余量,这可防止产生可能落入音频频带的音调。
图4显示了和图3所示相同的D类输出,但其带有±5%调制,在40kHz模式重复频率下由伪随机序列来实现。
图5显示了图3和图4颜色叠加后的图片,更清楚地显示了由扩频时脉带来的差异。能够看见在整个频谱范围内,基准时钟频率的奇次谐波被抑制了将近10dB。
单边调制
可以采用一种附加方法来减少EMI,通过修改调制方案,当音频基带信号振幅变得足够大时,允许单边差分或桥式D类输出对停止切换(图6)。这本质上允许反向输出,一直持续到开关,以便进行全面调制,将输出信号保持在剩余间隔直至其最高峰值。此方案,在很大比例时间内(取决于音频源材料),仅有一个输出在开关,因而EMI(在那个时间内)减少了一半。这增加了优势,减少了由于功率器件门和其它寄生电容充放电带来的固定开关损耗。它还缩短了输出在ERC转换方面的时间,如上所述,该转换有少量的效率代价。此技术的缺点是放大器的整体前向增益会有些许降低,同样地,总体谐波失真(total harmonic distortion,THD)和噪声也有少量增加。带有和未带有单边调制的D类输出频谱如图7。
结论
D类放大器通常用于便携设备,因其功率效率超过传统AB类放大器。D类技术的主要缺点是其固有的EMI,会对周边电子设备产生不利影响。现在已经出现了一些有效的IC设计技术,能够极大地缓解EMI问题,而无需负担额外的外部元件。
上一篇:探析电磁兼容与电路保护技术
下一篇:电力系统继电保护技术的现状与发展
推荐阅读最新更新时间:2023-10-18 15:38
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 省钱、省心的购买租赁方案,让您不再为预算烦恼!
- 捉虫行动三:我们只要最精致的DSP资料!
- 直播已结束【解锁 TI Sitara AM2x MCU 在电机驱动中的新可能】
- 芯(E)币兑换Nucleo扩展板:让你的Nucleo变身成pyboard
- 下载、评论赢双重好礼|PI 邀您跟littleshrimp一起拆解小米最新二合一充电宝
- 直播已结束|Molex 和 TTI 更小型、高速、可靠的连接器推动物联网应用的新发展
- Microchip电源评估板促销,还有红包送!
- 看是德科技利用校准降低仪器测量不确定度、提高测试精度 直播享好礼!
- 购买TI store MSP432P401R LaunchPad 晒单就送礼!