在最近于美国华盛顿举行的 APEC 2009 峰会上,飞兆半导体发布了交错式双临界导通模式 (Boundary Conduction Mode, BCM) 功率因数校正 (PFC) 控制器FAN9612。FAN9612 整合了数项新颖的创新性功能,旨在实现性能最大化,减少外部组件数目,提供 一系列稳健的保护功能,并提高效率。
图文:交错式临界导通模式PFC控制器效率最大化完善的转换器保护功能
交错是一种特殊的并联方式,即在两个或多个功率级 (通常称之为相位或通道) 之间存在独特的相位关系。为了保持两级设计所拥有的全部纹波电流消除优势,必须让各个通道彼此间相差 180 度同差。由于每个通道都是针对处理 50% 功率而设计的,故同步的中断或失败,尤其是在负载超过最大额定电流的 50% 时,就可能造成整个设计的崩溃。换言之,缺乏严格容限的同步算法不必要的推动对功率级冗余设计 (over design)的需求。FAN9612 采用飞兆半导体专有的同步方案 Sync-Lock™ ,可确保软启动、软中止(Soft-Stop)期间以及所有瞬态和稳态工作条件下近乎完美的 180 度同步。如果某个故障模式导致一个信道无法工作,内部重启动定时器会被激活,相当于高效的功率限制,可防止此通道提供全额定功率。所有这些必须的同步和安全功能都完全由FAN9612处理,无需功率级冗余设计,从而获得针对效率、性能和可靠性高度优化的设计。
任何电源设计都要优先考虑启动,PFC 转换器也不例外。对大多数 PFC 应用而言,稳压输出电压设置点在 400V 范围之内,故只要有任何电压过冲,尤其是在软启动期间,就会对输出大电容和开关组件造成额外的应力。FAN9612 能够解决与启动有关的两大重要问题。第一是能够在整个启动程序期间保持闭环软启动。图1 所示为 FAN9612 专有软启动电路的功能实现及启动程序仿真。
图1 闭环软启动性能
通过把参考电压钳位为误差放大器反馈电压,软启动电容CSS 稍微预充电,加快初始化启动。更重要的是,误差放大器输出直接控制软启动充电电流 ISS(VCTRL),因此,若误差放大器接近饱和,电流源就减小VSS(t),确保对误差放大器输出电压的控制保持良好。不管在软启动周期内后级DC-DC 转换器从何处开始消耗 PFC 输出的功率,FAN9612 都可以在内部调节同相误差放大器输入以避免饱和,确保启动或重启动期间不会因瞬态故障条件而产生电压过冲。
除了闭环软启动工作模式之外,FAN9612 还具有通过 VOUT 电阻分压器网络直接启动的可选功能。对于没有足够的辅助偏置电源电压或待机电源的应用,启动任何高电压 IC 都必须对 VDD 电容进行充电,直到电压达到控制 IC 欠压锁定 (UVLO) 导通阈值为止。这一般需要额外的电路,因而会增加功耗及降低效率。有些设计人员会采用这种方法:当通过自举偏置 (bootstrap bia) 电源对 PFC 控制 IC 进行供电时,关断启动电路。虽然这种方案有助于降低功耗,但往往需要高侧开关和驱动电路,从而增加外部组件的数目。FAN9612 经特别设计,无需外部启动电阻即可启动。在 FB 和 VDD 之间增加一个小信号二极管 DSTART 即可提供一条经过 RFB1 的电流路径,见图 2 中的红色虚线。一旦内部 5V 参考电压有输出,小信号 MOSFET QSTART 就被开通,电阻反馈网络即从启动功能中解脱出来。另外也可以根据情况 ,忽略 DSTART 和 QSTART,采用传统的启动方法。
图2 交替式简化启动电路
对于感测 AC 输入电压的 PFC 电路,大多数控制器都需要一个外部两极滤波器来获得 RMS 线电压。虽然这对线路 UVLO (也称为 brown-out 保护,即电压过低保护) 是可接受的,但两极滤波器的慢速和低灵敏度会导致额外的线电流失真,从而妨碍利用 RMS 电压信息来实现任何部分的 PWM 控制,比如电压前馈。而 FAN9612 却能够通过感测 AC 输入电压的峰值来获得 RMS 值。由于 RMS 值与线电压峰值成比例,所需外部电路就从两极滤波器简化为一个简单的电阻分压器。如图 3 所示,FAN9612 利用经过分压(divided down) 的峰值电压信号来实现欠压保护 (VIN(UVLO))、输入过压保护 (VIN(OVP)),以及电压前馈 (VIN(VFF)) 这些 PWM 控制任务。RIN1 和 RIN2 的比值可用于设定 VIN(OVP) 、跳变点和欠压保护级。 FAN9612 独有的Brown out迟滞可编程特性,可通过内部 2µA 电流源和 RIN(HYS) 进行设置。
电压前馈为 PFC 转换器提供了数种优势。首先,控制环路增益变得与输入电压无关,这就大大简化了补偿任务,并有助于在线路瞬变期间保持更严格的输出电压调节。其次,输入电流仍为正弦波,即使在功率受限期间也可减少电流失真。第三,由于用户可编程最大导通时间 (MOT) 与 VIN 成比例,所以每个通道都获得一个有效的功率限制功能。最后,FAN9612 还能够在 DC 输入电压下工作,故而适用于大功率逆变器,比如那些专为太阳能应用而设计的逆变器。
除了欠压保护和输入电压 OVP 外, FAN9612 还具有两极输出电压 OVP 功能。图 4 中所示的反馈电阻 RFB1 和 RFB2 对输出电压进行分压,并把信号馈入到 FAN9612 跨导误差放大器的输入端。一个非锁死输出 OVP 电路内部监控该信号,并被设置在反馈电压超过 3.25V 时阻止开关。因此实际上,RFB1 和 RFB2 具有调节输出电压和执行输出 OVP 的双重功能。某些应用可能有限制输出 OVP 和电压调节功能共享同一组串联电阻的设计要求。FAN9612针对这一问题提供第二级锁定 OVP 功能,该锁定电路的阈值为3.5V ,可通过ROV1 和 ROV2 来主动设置比非锁定 的OVP更高的保护电压 。在 RFB2 与地短路这种可能性较小的事件中,这个第二级 OVP 功能可关闭DRV1 和 DRV2。
图4 简化应用电路
至于过流保护 (OCP),FAN9612 可通过图 4 中的 RCS1 和 RCS2 独立感测每个通道的峰值电流。较之在返回路径上采用单个电流感测电阻,对相位的逐个感测可提供更可靠、更有效的 OCP 解决方案。为了减少组件,每个输入都在内部集成了一个小型 RC 滤波器 (一般用于抑制电流感测输入中的前沿尖刺)。最后,FAN9612 电流感测阈值设为 200mV,以使电流感测电阻上的功耗最小化。
FAN9612 采用数项节能技术来满足额定负载和轻负载下的效率要求。其同步电路的一部分利用最大频率钳位来限制轻载下和 AC 输入电压的过零点附近的与频率相关的 Coss MOSFET 开关损耗。在 VIN 线电压部分大于 VOUT/2 期间,使用谷底开关技术以感测最佳MOSFET 导通时间,可进一步降低 Coss 电容性开关损耗。另一方面,当 VIN 小于 VOUT/2时,主功率 MOSFET 利用零电压开关 (ZVS) 导通。ZVS 结合 BCM 工作模式的零电流开关 (ZCS),可消除 MOSFET 导通开通损耗和输出整流器的反向恢复损耗。
FAN9612 的自动相位管理可以满足提高轻载效率的要求。FAN9612 评测板 (EVB) 可以演示约30% (相位禁用) 和 40% (相位启用)负载电流之间的相位管理能力,而利用FAN9612 MOT 输入则可准确调节阈值。图 5 所示的效率图显示了在负载电流刚好下跌到最大额定值的 30% 以下致使某个相位禁用时,轻载效率的提高。当负载电流达到最大额定值的近 40% 时,两通道交错式工作恢复。FAN9612 EVB 是一个 400W 双交错式BCM PFC 转换器,当 VIN = 115VAC 时,测得轻载负载效率提高 1%;VIN = 230VAC 时,提高 6.5% 。
图5 FAN9612 EVB 相位管理的效率性能(注:包含 EMI 滤波器)
总而言之,对于 1KW 以下的 PFC 解决方案,FAN9612 能够实现尽可能高的效率级别,并具有最丰富的功能和性能组合,是目前市面上最好的交错式 BCM PFC 控制器。
可受益于这种拓扑的应用包括消费电子产品、数字显示器 (LCD、PDP、医疗设备)、照明、台式电脑、入门级服务器、电信整流器、工业电源系统,以及太阳能逆变器。
上一篇:美信案例:确保打印头电源动态输出电压的参考设计
下一篇:技术深入了解:电源管理——原理、问题和器件
推荐阅读最新更新时间:2023-10-18 15:39
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC