交叉级联正激式同步整流拓朴的实现

最新更新时间:2011-09-17来源: 互联网关键字:降压变换器  交又正激变换器  同步整流  自偏置同步整流 手机看文章 扫描二维码
随时随地手机看文章

1 概述

利用 现 代 电力电子技术,控制功率变换装置中功率开关晶体管导通和关断的时间比率,实现输入和输出形态转变的电路模式都称为开关型变换器电路。DC-DC变换器是开关电源的核心组成部份,常用的正激式和反激式电路拓朴。因为结构简单、输入和输出电气隔离、使用元器件较少等优点,在中小功率电源中广泛应用。正激式变换器与反激式相比,变压器铜损较低,副边纹波电压和电流的衰减显著,因此,更适用在低压,大电流的场合下应用。常规 正 激 式变换器的功率处理电路只有一级,存在MOSFET功率开关电压应力大,特别是当二次侧采用自偏置同步整流方式,输入电压变化范围较宽,如输入电压为75V时,存在栅极偏置电压过高,甚至有可能因栅压太高而损坏同步整流MOSFET的危险。而且当输出电流较大时,输出电感上的损耗将大大增加,严重地影响了效率的提升。使用交叉级联正激式同步整流变换电路,不但输出滤波电感线圈可省去,实现高效率、高可靠DC-DC变换器,达到最佳同步整流效果。

2 基本技术

2.1交叉级联正激变换原理

交叉 级 联 变换的拓朴如图1所示,前级用于稳压,后级用于隔离的两级交叉级联的正激变换器组成的同步降压变换器。为了实现宽输入电压范围及隔离级恒定的电压输入,前后两级正激变换都应在最佳的目标下工作,从而确保由它所组成的高效率同步降压变换器能接收整个35-75V通信用输入电压范围,并将它变换为严格调整的中间25V总线电压。实际 中 间 总线电压由隔离级的需要预置,取决于隔离级的变比。中间电压较高时,可以采用较小的降压电感值和较低的电感电流,因而损耗也少。整个降压级的占空比保持在30^'60%,可协助平衡前后两级正激变换的损耗。为使性能最佳,并使开关损耗降至最小,开关频率的典型值为240k-300kHz;由于使用低通态电阻(RDS(on))的MOSFET,导通损耗比较小。传统的单级变换器主开关必需使用至少200V以上的MOSFET,其RDS(on)等参数显著增加,必然意味着损耗增加,效率下降。交叉级联正激变换拓扑的简化原理图如图2所示。

2.2同步整流技术

众所 周 知 ,普通二极管的正向压降为1V,肖特基二极管的正向压降为0.5V,采用普通二极管和肖特基二极管作整流元件,大电流情况下,整流元件自身的功耗非常可观。相比之下,如果采用功率MOSFET作整流元件,则当MOSFET的栅源极施加的驱动电压超过其闽值电压,MOSFET即进入导通状态,无论从漏极到源极或从源极到漏极,均可传导电流。导通电流在MOSFET上产生的压降仅与MOSFET的沟道电阻成比例关系,n个MOSFET并联时,压降可降为单个MOSFET的1/ n。因此,理论上由整流元件压降产生的损耗可人为的降到最小。同步整流(SynchronousRectify,缩写为SR)正是利用MOSFET等有源器件的这种特性进行整流的一项技术。

采用 功 率 MOSFET实施SR的主要损耗为:
导通损耗:

 
开通损耗:
 

关断损耗:

 

驱动损耗:

 

式中 I 为 正向电流有效值,RDS(on)为通态电阻,fS为开关频率,CGSS为输入电容,Coss为输出电容,D为占空比。可见 , 正 向导通损耗与RDS(on)成正比。不同VDS的MOSFET, RDS(on)往往可相差几个数量级,所以相同电路拓扑中采用100V MOSFET的损耗比采用200VMOSFET明显要低。考虑到低VDS的MOSFET比高VDS MOSFET的Coss要小,据关断损耗式,表明低VDSMOSFET的关断损耗也小。驱动损耗式为开关过程中输入电容充放电引起的损耗,该损耗与栅一源驱动电压的平方成正比。由于采用了两级变换器,对隔离级来说,因稳压级己经将较宽的输入电压稳在固定的中间总线电压上,变压器的变比可以达到最佳。

MOSFET的正向通态电阻RDS(on)以及输入电容是固定的,驱动损耗只与驱动电压的平方成正比关系。总之,采用两级变换器可使正向导通损耗,驱动损耗等减到最小程度。此外 , 交 叉级联正激变换电路拓扑中,输出级同步整流MOSFET所需电压仅为输出电压的两倍,再加上1.2倍的保险系数,器件的耐压只是输出电压的2.4倍,远小于传统单级变换器解决方案需要达到输出电压4-10倍的要求。这样采用交叉级联正激变换电路拓扑的两级变换器,便可使用低压、低RDS(on,的MOSFET来实现极低的输出级导通损耗。两级变换器还采用了并联MOSFET的输出,得到更低的RDS(on)以及更低的损耗。在系统整体设计的时候,只要元件热分布合理,装置的使用寿命和可靠性必将有极大提高。

2.3电流前馈技术

由图 2可 见,交叉级联正激变换电路拓扑的二次侧没有输出滤波电感线圈,单级式变换器则必须有输出滤波电感线圈。单级变换器设计时必须兼顾输出滤波电感中电流的断续模式(DCM)和连续模式(CCM),电感值的选定不但理论计算复杂,而且需要实验校验。交叉级联正激变换电路拓扑中的隔离级采用电流前馈技术,输出滤波电感不需要流过全部输出电流。特别是对低压大电流输出而言,输出级不会因输出电流的增加而发生难以预料的变化,这是该电路拓朴的主要优点。因此,当系统设计需按比例变化,特别是按输出电压及输出电流变化时由于输出电流的变化在一次侧隔离级的输入电流中已有反映,亦即所谓电流前馈,这样滤波电感线圈的损耗大大降低,从而也提高了变换器的效率。

 

3 设计实例和实验结果

应用 上 述 设计思路,我们设计了一台用于通信设备的DC -DC半砖电源。具体技术指标如下:输入 电压 DC3 5-75V:输出电压DC3 .3V/30A;输出功率100W;效率92% (TYPICA );电压调整率士0.1%;负载调整率士0.1%;隔离电压1 500V,,5;保护要求是过压、过流、过温等。

图 3所 示 为采用交叉级联正激变换电路设计的通信设备专用DC-DC半砖电源原理图。工作原理如下,R,, R2. D,, Q,, D:和C:组成自举启动电路,得到启动电压Vc分别给ICI,I C2和IC3供电。电路启动后,T,的辅助绕组经D3整流,C3平滑滤波后为IC提供电压VD,因VD电压高于Vc,二极管D2反偏,Q、的供电关闭,达到启动电路无功耗的目的。IC:的脚6输出方波信号,一路直接送到ICl的脚5,另一路经Q2倒相后送到IC:的脚6作为IC,的输入信号。IC,的脚3和脚8输出相位相差180“的方波脉冲信号,分别驱动MOSFETQ 31 Q 4- Q3" Q 4" L 2等组成高效率的同步降压级,降压级的占空比保持在30-60%. IC3.Qs"Q6"T.等组成交叉级联正激式隔离级,达到DC-DC
最终的输出电压。马、DS为变压器T,的磁复位绕组。由于降压级已将变化范围较宽的输入电压严密调整为中间总线电压,因此隔离级不需调压。交叉级联正激变换器都工作在50%的占空比,可以采用VDS为100V的MOSFET. Q7, Q:等组成自偏置式同步整流电路,
因隔离级的输出电压是固定的,所以同步整流MOSFET漏极的输入电压也是固定的,占空比也为50%,可以使用VDS很低的MOSFET(本例中采用的是VDS为12V的MOSFET,损耗最低)因功耗引起的发热问题均可以方便解决。因输入电压固定,多出电压时,能够方便地实现高电压调整率和高负载调整率,单级变换器很难做到此点。其他电路功能(如过流、过压、过温度保护等)不再一一阐述。经测量该电路的工作效率约在92%左右,达到预定的设计要求,并且调试较简单,为今后的批量生产奠定了基础。

4 结束语

交叉 级 联 正激式变换器,电路组成稍微复杂,但能平坦分配各级损耗达到整体功耗最小,从而可在更高的环境温度下工作。较低的功耗,意味着更高的效率;工作环境温度高,意味着散热处理能力强和输出电流大。而可用输出电流成本的降低,预示着系统长期可靠性会更好。我们的实践表明交叉级联正激式同步整流拓朴确实是一种非常有前景的功率变换结构。各项指标优于相同的单级变换器。

关键字:降压变换器  交又正激变换器  同步整流  自偏置同步整流 编辑:冰封 引用地址:交叉级联正激式同步整流拓朴的实现

上一篇:降压型开关稳压器AP1510及其应用
下一篇:三相电压型PWM整流器

推荐阅读最新更新时间:2023-10-18 15:44

反激变换器副边同步整流控制器STSR3应用电路介绍
1 概述 本文给出ST公司2003年新推出的开关电源IC产品STSR3应用电路分析。它是反激变换器副边同步整流控制器,具有数字控制的智能IC驱动器。采用STSR3作同步整流控制芯片的反激变换器基本电路简化结构见图1。STSR3的内部功能方框见图2,其引脚排列见图3。   图1 STSR3典型应用电路简化示意图 图2 STSR3内部功能方框图 图3 STSR3各引脚排列图 STSR3智能驱动器IC可提供大电流输出,以正常地驱动副边的功率MOSFET,使之作为大电流输出的高效率反激变换器中的同步整流器。根据取自隔离变压器副边的一个同步时钟输入,IC产生一个驱动信号,它具有与原边PWM信号相关的死区时
[嵌入式]
同步整流技术在通信电源模块中的应用
同步整流技术概述   现今电力电子技术在电源模块中发展的趋势是低电压、大电流。使得在次级整流电路中选用同步整流技术成为一种高效、低损耗的方法。由于功率MOSFET的导通电阻很低,能提高电源效率,所以在采用隔离Buck电路的DC/DC变换器中已开始形成产品。同步整流技术原理示意图见图1。   同步整流技术是通过控制功率MOSFET的驱动电路,来利用功率MOSFET实现整流功能的技术。一般驱动频率固定,可达200kHz以上,门极驱动可以采用交叉耦合(Cross-coupled)或外加驱动信号配合死区时间控制实现。 同步整流技术的应用   同步整流技术出现较早,但早期的技术很难转换为产品,这是由于当时 1)驱动技术不成熟,可靠
[电源管理]
基于LM3478的50W DCDC升降压变换器设计方案
引言   现代电子技术发展很快,半导体供应商不断推出新器件,从而推动电子应用工程师的不断创新设计,以满足市场的日益需求。本文介绍的即是基于客户的需求,应用美国国家半导体公司的新型电流型PWM芯片L   通常称之为升降压变换器SEPIC的简单原理如下:当SW开通时,加在L1,L2上的电压均为Vin,此时Cp并在L2上,且有Cp上的电压与L2上的相等。当SW关断时,L1中的电流继续沿着Cp、D1流向Cout输出到   该电路是基于SEPIC拓扑、应用LM3478芯片按照客户的技术要求设计的。在该电路中,考虑到适配器的体积及储能电感磁性材料的体积,选定工作频率Fs=250KHz。
[电源管理]
基于LM3478的50W DCDC升<font color='red'>降压变换器</font>设计方案
借用同步整流架构提高电源转换器效率
  随着消费性电子的发展,各种供电电源如适配器所消耗的电能占全球能耗的比例急剧加大,成为不可忽视的耗能「大户」。以美国为例,每年适配器须要消耗电能3,000亿度,占整个国家每年用电总量的11%。   现今节能减碳声浪不断提高,各国政府法规对电源的要求也越来越严格。美国能源部(Department of Energy, DoE)针对External Power Supply公告新的要求NOPR(Notice of Proposed Rulemaking),将对电源供应厂与相关节能零件带来新的挑战,表1为针对效率的要求。详细资料可参考美国能源部官方网站。    同步整流晶片加速取代二极管   手持式电子产品如平板装置(Tablet
[电源管理]
借用<font color='red'>同步整流</font>架构提高电源转换器效率
同步整流实现反激变换器设计
详细分析了同步整流 反激 变换器的工作原理和该驱动 电路 的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于 电流 断续模式,控制 芯片 选用UC3842,对设计过程进行了详细论述。通过Saber 仿真验证了原理分析的正确性,证明该变换器具有较高的变换效率。   引言   反激变换器具有电路简单、输入输出 电压 隔离、成本低、空间要求少等优点,在小功率 开关电源 中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流 二极管 通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态 电阻 极低的专用功率 MOS
[电源管理]
<font color='red'>同步整流</font>实现反激变换器设计
LLC单路/多路输出同步整流电路设计
我们的同步整流方案非电流型,也非电压型.   1.IC是利用侦测Mosfet Vds 下将沿的斜率来控制IC 的开启,可以判断识别轻载时的噪声,避免噪声造成的误动作.同时我们的这项专利技术使我们的产品可以由客户根据自己的需要灵活设置同步整流电流启动点(负载电流0.5A,1A或其他电流以上由客户自行通过pin1和pin7间Rt来灵活设定),使我们的同步整流方案不仅解决重载的效率提升,在轻载,中载都有很高效率.   2.在CCM和DCM模式下都能工作,并且on-time duty 跟随电路自动转换, 完全打开,无论110V / 220V,全电压输入皆可适用,高效.不用增加成本和同步整流Mosfet并联萧特基进行辅助.   3.通过co
[电源管理]
LLC单路/多路输出<font color='red'>同步整流</font>电路设计
详解同步整流技术在正激变换器中的应用
1 引言 近年来随着电源技术的发展,同步整流技术正在低压、大电流输出的dc/dc变换器中迅速推广应用。在低压、大电流输出的情况下,输出端整流管的损耗尤为突出。例如,对采用 1.5v、20a电源的笔记本电脑而言,此时超快恢复整流二极管的损耗已经超过电源输出功率的50%,即使采用低压降的肖特基整流二极管,损耗也会达到输 出功率的18%~40%。因此,传统的二极管整流电路已经成为提高低压、大电流dc/dc变换器效率的瓶颈。 由于mosfet不能像二 极管那样自动截止反方向电流,因此同步整流器的驱动是同步整流技术使用的一个关键。驱动方式的选取不仅关系到变换器能否正常工作,更决定了变换器性能。按 照驱动方法的不同,同步整流分为自驱型
[嵌入式]
崇贸科技发布二次侧同步整流控制器芯片
崇贸科技(System General)发表其最新电源IC产品SG6203,该款二次侧同步整流控制芯片适用于一般低电压高电流之返驰式电源转换器,主要的终端应用包括笔记型计算机、液晶电视,以及工业计算机等,其功能乃是降低电源系统中的功率耗损,进而提升电源转换效率,是发展低耗能、高效能电源供应系统的理想解决方案。 SG6203是用于控制返驰式转换器(Flyback converter)的二次侧同步整流MOSFET,搭配一次侧脉波宽度调变控制器(PWM),以取代传统二次侧的萧基特二极管(Schottky diode),可降低导通损失,提高转换效率。为将能耗降至最低,SG6203运用崇贸同步整流专利技术,在连续电流工作模式中,透过其
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved