开关电源的冲击电流控制方法

最新更新时间:2011-09-18来源: 互联网关键字:开关电源  冲击电流 手机看文章 扫描二维码
随时随地手机看文章

1. 引言

开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路

由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。

图3. 通信系统的最大冲击电流限值(AC/DC电源)

图4. 通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源)

冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法

2.1 串连电阻

对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。

串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。

图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。

图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)

2.2 热敏电阻

在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。

用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

2.3 有源冲击电流限制法

对于大功率开关电源,冲击电流限制器件在正常工作时应该短路,这样可以减小冲击电流限制器件的功耗。

在图6中,选择R1作为启动电阻,在启动后用可控硅将R1旁路,因在这种冲击电流限制电路中的电阻R1可以选得很大,通常不需要改变110V输入倍压和220V输入时的电阻值。在图6中所画为双向可控硅,也可以用晶闸管或继电器将其替代。

图6. 有源冲击电流限制电路 (桥式整流时的冲击电流大)

图6所示电路在刚启动时,冲击电流被电阻R1限制,当输入电容充满电后,有源旁路电路开始工作将电阻R1旁路,这样在稳态工作时的损耗会变得很小。

在这种可控硅启动电路中,很容易通过开关电源主变压器上的一个线圈来给可控硅供电。由开关电源的缓启动来提供可控硅的延迟启动,这样在电源启动前就可以通过电阻R1将输入电容充满电。

3. DC/DC开关电源的冲击电流限制方法

3.1 长短针法

图7所示电路为长短针法冲击电流限制电路,在DC/DC电源板插入时,长针接触,输入电容C1通过电阻R1充电,当电源板完全插入时,电阻R1被断针短路。C1代表DC/DC电源的所有电容量。

图7. 长短针法冲击电流限制电路

这种方法的缺陷是插入的速度不能控制,如插入速度过快,电容C1还没充满电时,短针就已经接触,冲击电流的限制效果就不好。

也可用热敏电阻法来限制冲击电流,但由于DC/DC电源的输入电压较低,输入电流较大,在热敏电阻上的功耗也较大,一般不用此方法。

3.2 有源冲击电流限制法

3.2.1 利用MOS管限制冲击电流

利用MOS管控制冲击电流可以克服无源限制法的缺陷。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以做成冲击电流限制电路。

MOS管是电压控制器件,其极间电容等效电路如图8所示。

图8. 带外接电容C2的N型MOS管极间电容等效电路

MOS管的极间电容栅漏电容Cgd、栅源电容Cgs、漏源电容Cds可以由以下公式确定:

公式中MOS管的反馈电容Crss,输入电容Ciss和输出电容Coss的数值在MOS管的手册上可以查到。

电容充放电快慢决定MOS管开通和关断的快慢,为确保MOS管状态间转换是线性的和可预知的,外接电容C2并联在Cgd上,如果外接电容C2比MOS管内部栅漏电容Cgd大很多,就会减小MOS管内部非线性栅漏电容Cgd在状态间转换时的作用。

外接电容C2被用来作为积分器对MOS管的开关特性进行精确控制。控制了漏极电压线性度就能精确控制冲击电流

电路描述:

图9所示为基于MOS管的自启动有源冲击电流限制法电路。MOS管 Q1放在DC/DC电源模块的负电压输入端,在上电瞬间,DC/DC电源模块的第1脚电平和第4脚一样,然后控制电路按一定的速率将它降到负电压,电压下降的速度由时间常数C2*R2决定,这个斜率决定了最大冲击电流。

图9. 有源冲击电流限制法电路

D1用来限制MOS管 Q1的栅源电压。元器件R1,C1和D2用来保证MOS管Q1在刚上电时保持关断状态。

上电后,MOS管的栅极电压要慢慢上升,当栅源电压Vgs高到一定程度后,二极管D2导通,这样所有的电荷都给电容C1以时间常数R1×C1充电,栅源电压Vgs以相同的速度上升,直到MOS管Q1导通产生冲击电流。

其中Vth为MOS管Q1的最小门槛电压,VD2为二极管D2的正向导通压降,Vplt为产生Iinrush冲击电流时的栅源电压。Vplt可以在MOS管供应商所提供的产品资料里找到。

MOS管选择

以下参数对于有源冲击电流限制电路的MOS管选择非常重要:

漏极击穿电压 Vds

必须选择Vds比最大输入电压Vmax和最大输入瞬态电压还要高的MOS管,对于通讯系统中用的MOS管,一般选择Vds≥100V。

栅源电压Vgs

稳压管D1是用来保护MOS管Q1的栅极以防止其过压击穿,显然MOS管Q1的栅源电压Vgs必须高于稳压管D1的最大反向击穿电压。一般MOS管的栅源电压Vgs为20V,推荐12V的稳压二极管。

其中Pout为DC/DC电源的最大输出功率,Vmin为最小输入电压,η为DC/DC电源在输入电压为Vmin输出功率为Pout时的效率。η可以在DC/DC电源供应商所提供的数据手册里查到。MOS管的Rds_on必须很小,它所引起的压降和输入电压相比才可以忽略。

图10. 有源冲击电流限制电路在75V输入




关键字:开关电源  冲击电流 编辑:冰封 引用地址:开关电源的冲击电流控制方法

上一篇:12V输入-5.2/15A输出的双相反向降压/升压电源
下一篇:高频电源模块缓冲电路优化探讨

推荐阅读最新更新时间:2023-10-18 15:45

开关电源设计案例详解
   开关电源 某些参数做得不好会造成EMC难过关、待机功耗大、效率不高。如何减小开关 电源 的待机功耗、提高开关电源的效率是全球电源行业共同关注的问题。本文配图讲述绿色开关电源设计要点。   随着现代科学技术的发展,器件的性能提高,特别是节能型电源芯片如雨后春笋般涌现,加上电路设计的成熟,要设计效率高、待机功耗小的节能型开关电源已是不太难的事情,设计节能型开关电源正是适应了节能减排的需求。近几年来,美国“能源之星”的实施对设计和制造高性能的节能型开关电源起到了推波助澜的作用。   符合“能源之星”的开关电源又叫“绿色开关电源”,针对开关电源的“能源之星”已经有了多个版本,随着版本的升级,开关电源的效率越来越高,待机功耗越来越小,
[电源管理]
<font color='red'>开关电源</font>设计案例详解
电压型控制开关电源的频域模型的概念
  频域设计是开关电源等一大类自动调节系统的一种简便的间接设计方法,此法可以使所设计的开关电源系统满足一组频域指标。虽然在频率响应曲线上,不能够严格定量地给出系统的瞬态响应,但却可以清楚地表现出系统应当如何改变。为了能在频域内分析设计开关电源,首先要建立其频域模型,主要是方块图和传递函数。   开关电源的控制形式有两种:即电压型控制和电流型控制,前者是单环电压型控制系统,后者是电压、电流双环控制系统。
[电源管理]
开关电源的PCB设计规范
在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数- 输入原理网表- 设计参数设置- 手工布局- 手工布线- 验证设计- 复查- CAM输出。 二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊
[半导体设计/制造]
基于开关电源的模块的设计
随着我国科技生产水平的不断提高,各行各业对供电质量的要求越来越高,而智能高频开关电源作为一种继电保护装置和控制回路装置,为生活和生产中的供电的可靠性提供了有力的保障。当市电供电中断时还可以作为后备电源,所以说智能高频开关电源是对供电质量保证的重要组成部分之一。它具有高度灵活组合、自主监控的特点,另外可靠性强、稳定性好且具有体积小、噪声低、节能高效、维护方便等也是它的一大优点。 可以说智能高频开关电源是一种集计算机技术、控制技术、通信技术于一体的高科技产品,可实现系统的自动诊断、自动测试和自动控制。本文主要阐述的是智能高频开关电源的整流模块的设计方案。 1 系统总体结构介绍 智能高频开关电源系统的总体结构主要由主监控单元、配电模块、
[电源管理]
基于<font color='red'>开关电源</font>的模块的设计
反激式开关电源的变压器电磁兼容性设计
本文以一款反激式开关电源为例,阐述了其传导共模干扰的产生、传播机理。根据噪声活跃节点平衡的思想,提出了一种新的变压器EMC设计方法。通过实 验验证,与传统的设计方法相比,该方法对传导电磁干扰(EMI)的抑制能力更强,且能降低变压器的制作成本和工艺复杂程度。本方法同样适用于其他形式的带变压器拓扑结构的开关电源。 随着功率半导体器件技术的发展,开关电源高功率体积比和高效率的特性使得其在现代军事、工业和商业等各级别的仪器设备中得到广泛应用,并且随着时钟频率的不断提高,设备的电磁兼容性(EMC)问题引起人们的广泛关注。EMC设计已成为开关电源开发设计中必不可少的重要环节。 传导电磁干扰(EMI)噪声的抑制必须在产品开发初期就加以考虑。通常
[电源管理]
反激式<font color='red'>开关电源</font>的变压器电磁兼容性设计
TOPSwitch-FX系列单片机开关电源应用设计
TOPSwitch-FX系列单片机电源集成电路广泛应用于各种通用及专用开关电源、待机电源、开关电源模块中。 一、能进行外部限流的12V、30W开关电源 由TOP234Y构成12V、30W高效开关电源的电路如图1所示。其交流输入电压范围是AC85~265V,满载时电源效率可达80%。交流电压u依次经过电磁干扰(EMI)滤波器(C10,L1)、输入整流滤波器(BR,C1)获得直流高压UI。UI经过R1和R2分压后接M端,能使极限电流随UI升高而降低。R1可提供电压前馈信号,当UI偏高时能自动降低最大占空比,以减小输出纹波。R2为电流极限设定电阻,所设定的Ilimit≈0.7Ilimit=0.7×1.5A=1.05A,略高于
[单片机]
TOPSwitch-FX系列单片机<font color='red'>开关电源</font>应用设计
一种数字可调的升压型开关电源的设计与实现
1 引言   近年来,数字化在电源领域得到广泛应用,许多电子设备要求电源具有多档级。因此,这里提出了一种利用数字控制、电压可调的开关电源设计方案,实现电压步进调整,并具有宽电压输入、稳压输出功能。   2 设计方案   方案系统设计框图如图1所示,输入为220 V,50 Hz交流电压,经电压变换,整流滤波后得到18 V的直流电压,送入Boost电路,经滤波输出直流。CPLD与单片机组成的数字控制模块输出脉宽调制信号(PWM),由按键控制改变PWM占空比,从而控制Boost电路的输出电压。该输出电压可在30~36 V范围内步进调节,实现多路电压输出。最大输出电流高达2 A。   输出电压经MAXl97 A/D
[电源管理]
一种数字可调的升压型<font color='red'>开关电源</font>的设计与实现
特种单片开关电源模块的电路设计
引言 特种集成开关电源主要包括以下5种类型 : 1)复合型开关电源; 2)恒压/恒流(CV/CC)型开关电源; 3)截流输出型开关电源; 4)恒功率输出型开关电源; 5)其他专用开关电源,例如高速调制解调器(HighSpeedModem)电源、DVD电源等。   特种单片开关电源有两种设计方案:第一种是采用通用单片开关电源集成电路(例如TOPSwitch-Ⅱ、TOPSwitch-FX、TOPSwitch-GX等系列),再配上电压控制环、电流控制环等外围电路设计而成的,其特点是输出功率较大,但外围电路复杂;第二种是采用最近问世的LinkSwitch系列高效率恒压/恒流式三端单片开关电源芯片,
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved