准谐振和谐振转换-两种提高电源效率的技术

最新更新时间:2011-09-20来源: 互联网关键字:准谐振  谐振转换  电源效率 手机看文章 扫描二维码
随时随地手机看文章

全球对能源成本上涨、环保和能源可持续性的关注正在推动欧盟、美国加州等地的相关机构相继推出降低电子设备能耗的规范。交流输入电源,不论是独立式的还是集成在电子设备中的,都会造成一定的能源浪费。首先,电源的效率不可能是100% 的,部分能量在电源大负载工作时被浪费掉。其次,当负载未被使用时,连接交流线的电源会以待机功耗的形式消耗能量。

近年来,对电源效率等级的要求日趋严格。最近,80% 以上的效率已成为了基本标准。新倡议的能效标准更是要求效率达到87%及以上。此外,只在满负载下测量效率的老办法已被淘汰。目前的新标准涉及了额定负载的25%、50%、75% 和 100% 这四个点的四点平均水平。同样地,最大允许待机功耗也越来越受到限制,欧盟提议所有设备的待机功耗均应低于500mW,对于我们将讨论的电视机,则小于200mW。

除专家级的高效率电源设计领域之外,电子设备中所用的功率范围从1W 到 500W的交流输入电源 ,一直以来主要采用两种拓扑:标准 (或硬开关) 反激式 (flyback) 拓扑,和双开关正激拓扑。这两种拓扑都很易于理解,而它们存在的问题,以及如何予以避免,业界都已有充分的认识。

不过,随着对效率的要求不断提高,这两种拓扑将逐渐为三种新的拓扑所取代:准谐振反激式拓扑、LLC谐振转换器拓扑和不对称半桥拓扑。准谐振反激式拓扑已被成功用于最低功率级到200W以上的范围。在70W-100W范围,LLC谐振转换器比准谐振反激式拓扑更有效。而在这两个功率级之上,不对称半桥转换器也很有效。

工作原理

准谐振和谐振拓扑都能够降低电路中的导通开关损耗。图1对比了连续传导模式 (CCM) 反激式、准谐振反激式和 LLC 谐振转换器的导通开关波形。

所有情况下的开关损耗都由下式表示:

这里,PTurnOnLoss 为开关损耗;ID 为 漏极电流;VDS 是开关上的电压;COSSeff 是等效输出电容值(包括杂散电容效应);tON 是导通时间,而fSW 是开关频率。

a)  CCM反激式转换器       b) 准谐振反激式转换器              c)LLC谐振转换器

图1   CCM反激式、准谐振反激式和LLC谐振转换器的开关波形比较

CCM反激式转换器的开关损耗最高。对于输入电压范围很宽的设计,VDS 在500V – 600V左右,是输入电压VDC 与反射输出电压 VRO 之和。进入不连续传导模式 (DCM) 时,漏电流降为零,开关损耗的第一项也随之降为零。在准谐振转换器中,若在电压波形的第一个 (或后一个) 波谷时导通,可进一步降低损耗。图中虚线所示为准谐振转换器在第一个谷底导通时的漏极波形。

如果准谐振反激式转换器的匝数比为 20,输出电压为5V,则 VRO 等于 100V,因此对于 375V 的总线电压,开关将在 275V 时导通。若有效输出电容 COSSeff 为73 pF,开关频率 fSW 为 66 kHz,则损耗为0.18W:

对于标准CCM反激式转换器,开关与漏极电压振铃不同步。在最坏的情况下,漏极电压大于VDC

那么损耗将为0.54W。故对于非连续模式反激式转换器,功耗在0.18W 和 0.54W之间波动,具体取决于时序。影响时序的因素有输入电压和输出电流,两者的优化组合可提高效率,反之会降低效率。对非连续模式反激式转换器,这常表现为满负载效率曲线的异常变化。这时,输入电压改变而输出电流 (及电压) 恒定。效率曲线随开关点前移而显示出波动。初级端电感的批次差异也会显示出变化,从而改变效率。

谐振转换器采用了一种不同的技术来降低开关损耗。让我们回头再看看导通损耗公式,由式中可见,如果VDS设为零,就根本没有损耗,这个原理被称为零电压开关 (ZVS),用于谐振转换器,尤其是LLC谐振转换器,如图1所示。

通过让电流反向流经开关,可实现零电压开关。当开关电流反向时,体 (body) (或外部反向并联) 二极管把电压钳位在一个低值,例如1V,这远低于前面提到的反激式转换器的400V。

谐振转换器利用一个谐振电路来产生延时。两个MOSFET产生方波,并加载在谐振电路上。通过选择合适的谐振电路,并把工作点设置在谐振点之上,流入谐振电路的电流可以非常接近正弦波,因为高阶分量一般都大为衰减。正弦电流波形滞后于电压波形,因而当电压波形达到其过零点时,电流仍为负,从而实现零电压开关。

结构

图2所示分别为准谐振转换器的电路示意图及LLC谐振转换器的模块示意图。准谐振转换器的电路示意图看起来非常类似于反激式转换器,只是它带有一个帮助确定电压谷底时序的检测电路。

图2:准谐振反激式转换器的电路图及LLC谐振转换器的模块示意图

LLC谐振转换器的模块示意图与双开关正激转换器截然不同。其之所以名曰“LLC”,是因为谐振电路的工作由3个组件来完成:变压器的磁化电感 (Lm)、变压器的漏电感 (Llk) 和谐振电容 (Cr)。对大漏电感的需求意味着必须一个额外的电感,或者是变压器的线圈需以增加漏电感的方式进行缠绕,以使其增大。LLC谐振转换器在初级端有一个半桥结构,但与双开关正激转换器不同的是,它不需要任何二极管。此外,还带有一个双开关正激转换器所没有的谐振电容,以及两个输出二极管与中心抽头变压器的输出相连。这些配置把谐振电路的交流输出整流为直流级,双开关正激应用所需的大输出电感在这里就不再需要了。

对于给定的功率级,准谐振反激式变压器的尺寸是最大的,因为它先把所有能量存储在初级侧,然后再将之转移到次级侧。双开关正激转换器则不然,它是在开关导通时把能量从初级侧转移到次级侧。和反激式转换器一样,双开关正激转换器也只使用一个磁极方向。LLC转换器却使用两个方向,所以在其它条件相同的情况下,对于给定的功率级,它的尺寸更小,无需考虑额外的漏电感或者是在变压器中包含的漏电感。

频率和增益

准谐振和LLC谐振开关的优势都包括了降低导通损耗,但缺点是频率随负载减小而增大。两种转换器的关断损耗都随频率的增大而变得严重。

这里,tOFF是关断时间,在轻载时上述效应会降低效率。飞兆半导体的准谐振FPS™ 功率开关产品系列,比如FSQ0165RN,采用了一种特殊技术“频率钳位” (frequency clamp) 来弥补准谐振控制器固有的这种缺陷。控制器只需等待最短时间,对应最大频率,然后开关在下一个波谷时导通,这种方法可以提高轻载下的效率。FPS™ FSFR2100 LLC 谐振转换器和包括FSQ0165RN在内的产品系列都具有突发模式功能,可降低极轻负载下的功耗。对于FSFR2100,如果系统需要,建议加入一个采用了FSQ510这类器件的辅助电源,以保持低待机功耗。

LLC 谐振转换器的另一个局限性是它的增益动态范围非常有限。图3所示为一个LLC 转换器的增益特性与频率及负载的关系。这种拓扑之所以广受欢迎是由于其频率随负载变化的改变较小,在100kHz的谐振频率上限,频率不随负载变化而改变。不过,它的增益动态范围很小,在1.0到1.4之间,如果1.2的增益代表一个220VAC输入电压的系统获得所需输出电压的增益,则动态范围允许189VAC 到 264VAC的输入电压范围。因此,这种拓扑不太可能适用于常见的输入电压范围,但只要通过精心设计来实现保持时间 (hold-up time) 的条件,就可以用于欧洲的输入范围。LLC谐振转换器通常与功率因数校正级一起使用,后者可为LLC转换器提供调节良好的输入电压。

通过增大漏电感与磁化电感的比值,可以增加增益动态范围,但代价是轻载效率因磁化电流变大而降低。实际上,这是通过采用第二个电感来实现的,因为如果漏电感太大的话,要获得可重复的漏/磁化电感比值是有实际限制的。

图3:LLC谐振转换器增益曲线示例

应用

准谐振反激式和 LLC 谐振转换器在嵌入式交流输入电源中的应用越来越广泛。

准谐振转换器的实际工作范围上从超低功率级到100W左右。对于集成式解决方案,7W/12V 电源的满负载效率约为81%;而对采用了带外部MOSFET的准谐振转换器的70W/22V电源,满负载效率则超过了88%。前者的待机功耗远低于150mW,后者的则小于350mW。采用较低的输出电压,效率必然会迅速降到上述水平之下。一个5W/5V的电源将在输出二极管上消耗至少10% 的额定输出功率。

准谐振拓扑还有一个好处是EMI远小于硬开关应用的,其频率将随400V输入电容上的纹波而变化,导致自然的频谱扩展。此外,由于开关行为在较低电压时发生,开关噪声减小,故共模EMI噪声也相应减小。

LLC谐振转换器的实际工作范围从70W左右到500W以上,带有一个PFC前端的FSFR2100已用于实现200W 到420W的电源。对于高达200W的应用,一般无需使用FSFR2100上的散热器,但通常建议在输出端使用一些肖特基二极管,而这些往往需要散热器。此外,也可以采用同步整流方法,这时因为采用了MOSFET (虽然MOSFET的控制信号不易产生),因此无需散热器。对于采用了肖特基二极管的应用,典型的峰值效率依照输入电压、输出电压和输出功率情况,大约在90%到95%之间。



关键字:准谐振  谐振转换  电源效率 编辑:冰封 引用地址:准谐振和谐振转换-两种提高电源效率的技术

上一篇:开关电源无模型控制的研究
下一篇:开关电源:通信电源监控系统的探讨

推荐阅读最新更新时间:2023-10-18 15:46

高频LLC转换器提升电源效率
在高压 电源 转换电路设计中,诸如电源噪声、开关频率、开关损耗、电源体积、可靠性等问题一直是关键所在。与其它的高压拓扑结构相比,LLC转换器因效率高且设计的电源体积小,在高压电源适用领域一直受到设计师的青睐,不过其设计难度也非常大。Power Integrations公司( PI )不久推出的HiperLCS系列LCS700-708高压LLC电源IC,将变频控制器、高压端和低压端驱动器以及两个MOSFET同时集成到了一个低成本封装中,具有出色的设计灵活性,其最高负载效率超过97%,并利用高频开关来减小 变压器 的尺寸和输出电容的占板面积,由此达到缩小电源尺寸的目的。图1所示为HiperLCS功率级的电路简图,其中LLC谐振电感
[电源管理]
高频LLC<font color='red'>转换</font>器提升<font color='red'>电源效率</font>
小编推荐:电源效率讨论之次级整流二极管的损耗
大功率 电源 与小功率 电源 中,次级整流二极管的损耗都是提高 效率 的一个瓶颈,我们如何将整流二极管的损耗降低到一个可接受范围? 大家自然想到加吸收电路,那么问题就来了: 1、什么情况下要加吸收? 2、加什么样的吸收?增加电容,增加RC吸收,整流二极管套磁珠,整流电路上串饱和电感。 3、什么情况下,吸收才是比较理想的,怎么判断? 由于电容两端的电压不能突变,故可以抑制电压尖峰,而电阻纯粹是一个阻尼振荡的作用。 对于计算业界一直不推荐,大都是采用测试法,因为计算出来的跟实际的还是有差异。 调试方法是先测量振荡波形,读出振荡频率,然后加C,使振荡频率减半,再计算电路的寄生电容、电感,最后根据振荡电路的特征参数来确定串联电阻的
[电源管理]
小编推荐:<font color='red'>电源效率</font>讨论之次级整流二极管的损耗
电源效率测试方法
电源行业有个最为重要的参数——电源效率,在电源原型板设计及调试过程中,工程师可以通过准确评价功率及效率,精准的定位主要功率损耗点,更换器件或更改拓扑结构等方法来提高电源的效率。 然而,在调试阶段,工程师常常面对三个棘手问题: 输入电源质量的测试 因为输入电压和电流波形并不是完全一样的,所以原型版测试需要对输入电源质量进行测试。 在电源设计调试阶段需要使用示波器进行信号的捕获分析,如何能提高使用示波器及电压电流探头提高测试精度及稳定性? 有源元件测量:开关器件 晶体管开关电路在转换过程中消耗的能量通常会达到最大,因为电路寄生信号会阻止设备立即开关。“关闭损耗”是指开关设备从ON转换成OFF时损耗的能量,“启动损耗”则是
[测试测量]
<font color='red'>电源效率</font>测试方法
一种谐振反激式开关电源的设计
准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150 mW 的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用 UCC28600 设计准谐振电源。 1 常规的硬开关反激电路 图1 所示为常规的硬开关反激式转换器电路。这种不连续模式反激式转换器(DCM)一个工作周期分为三个工作区间:( t0 ~ t1)为变压器向负载提供能量阶段,此时输出二极管导通,变压器初级的电流通过Np:Ns的耦合流向输出负载,逐渐减小。     MOSFET电压由三部分叠加而成:输入直流电压VDC、输出反射电压VFB、漏感电压VLK.到t1 时刻,输出二极管电流减小到0,此时变压器的初级电
[电源管理]
一种<font color='red'>准</font><font color='red'>谐振</font>反激式开关电源的设计
第二代飞思卡尔MCU的电源效率达到新水平
扩展的Kinetis MCU开发支持包括全面的软件、工具和支持工具,可加快设计并提高生产率。 2014年4月8日,达拉斯讯(飞思卡尔技术论坛)- 飞思卡尔半导体(NYSE: FSL)日前宣布扩大其现有的Kinetis K1x、K2x和K6x MCU,推出新一代旗舰Kinetis K系列MCU—Kinetis K0x MCU系列。此外,飞思卡尔还扩展了其面向整个Kinetis产品线的支持软件,为客户提供广泛的MCU软件和工具支持,其中包括Kinetis软件开发套件和Kinetis Design Studio IDE。      飞思卡尔高级副总裁兼MCU部总经理Geoff Lees表示:“凭借第二代Kinetis
[单片机]
ePropelled推出新的EV推进系统 可将电源效率提高15%
ePropelled是一家提供领先电力推进系统的技术公司。据外媒报道,该公司推出了具有突破性意义的 电动汽车 推进系统。新系统可将电源效率(power efficiency)至少提高15%,帮助制造商减少电池组的尺寸和成本,从而促进电动汽车的推广和应用。 (图片来源:ePropelled) ePropelled的动态扭矩切换系统(Dynamic Torque Switching™,eDTS)由三个主要部件组成,包括eDTS电动机(即无刷永磁同步电机)、电力电子驱动器(包括高压逆变器和根据车辆需求自动选择最有效操作模式的控制系统),以及电子开关矩阵,可将电动机的很多绕组连接到驱动器相位。 该eDTS系统使用由创新软件控
[汽车电子]
ePropelled推出新的EV推进系统 可将<font color='red'>电源效率</font>提高15%
谐振SMPS控制器L6565功能原理简介及应用
1概述 ST公司推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS运行。 L6565的主要特点如下: QRZVS回扫拓扑电流型初级控制; 线路电压前馈控制保证交付恒定功率; 频率折弯(foldback)功能可获得最佳待机频率; 逐周脉冲与打嗝(hiccup)模式过电流保护(OCP); 超低起动电流( 70μA)和静态电流( 3.5mA); 堵塞功能(开/关控制); 25V±1%的内部基准
[嵌入式]
用于通信电源中的零电压谐振开关变换器
摘要:分析零电压准谐振开关变换器的基本工作原理,同时介绍PFM控制器UC1864。实践证明,采用这种软开关技术设计的通信开关电源,具有良好的性能。 关键词:软开关准谐振变换器脉频调制 The Application of Zero- voltage Quasi- resonant Switching Converter in Telecommunication Power Supplies Abstract:The paper analyzes the basic principle of zero- voltage quasi- resonant switching converter,and intro
[电源管理]
用于通信电源中的零电压<font color='red'>准</font><font color='red'>谐振</font>开关变换器
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved