便携式电子设备、充电器和电源适配器的过流保护元件PPTC

最新更新时间:2011-09-21来源: 互联网关键字:电子设备  充电器  电源适配器 手机看文章 扫描二维码
随时随地手机看文章

引言

    便携式电子设备,例如蜂窝电话、PDA和手提电脑的电源都有特殊的过流保护要求。这些设备一般是通过AC/DC电源适配器供(充)电,将市电或未经稳压的直流电转变为合适的低压直流电。由于越来越多的人开始在零配件市场上购买电源适配器以及所谓的通用充电器,将不兼容或有故障的电源适配器应用于便携式设备的可能性也就大大增加。由于电源适配器的电压、极性以及电流都可能与该设备的电路规范不相吻合,从而将会导致设备损坏甚至带来安全隐患。

   由于体积小巧,熔断保险丝一度被广泛应用于便携式电子设备中。然而,由于新型micro系列的诞生,可复式电路保护元件的体积已不再成为其制约瓶颈。并且,由于此类设备出现的大多数故障本质上都是瞬时性的,可复式电路保护元件的应用可使生产商避免小故障大维修的高额成本。

通过在电源接口串联一个高分子正温度系数(PPTC)元件,因电源适配器不兼容而造成的过流损坏就可以被有效避免。另外,如果再并联一些其他元器件,如齐纳二极管、瞬时限压二极管或消弧电路,还可以起到防过压作用。

 

图1典型的蓄电池充电电路保护

2蓄电池充电电路保护

   图1是一个典型的电池充电电路。其中,交流电通过AC/DC电源适配器转变为合适电压对电池组进行充电。PPTC元件与过压保护元件协调作用共同完成下列工作:

1)针对可能损坏FET以及电池组的过大电流,提供过电流保护。

2)极性倒置时,PPTC通过动作以限制由于齐纳二极管正向导通而产生的过电流。

3)在过电压元件对电压过载提供保护时,由PPTC元件对导通电流进行限制,以保护过压器件。

    PPTC元件也可以用于接电池组的装置的端口,以保护由于使用有故障或不匹配的电池组而带来的过电流损害。对各种免提式汽车通话装置或耳机等供电时,电池组输出端保护亦能提供理想的保护功能。

3AC/DC电源适配器保护

    AC/DC电源适配器被广泛地使用于电池充电中,以及为各种消费类电器提供低成本直流电源。使用分离的AC/DC电源适配器,可使终端设备的设计更加简化,并便于通过各类认证标准。

    各种电源适配器都有其安全和可靠性要求,包括短路电流限制和变压器线圈过热保护。如果线圈超过了绝缘材料所规定的温度,绝缘层就可能损坏并导致变压器短路,甚至引发火灾。

 

图2PPTC用变压器次级线圈的过热保护特性

 

图3典型的CLA电路保护

   虽然PPTC元件的过电流保护效果非常显著,但其本身所具有的温度衰减特性却鲜受关注,事实上,这种特征非常适合在过热故障时提供有效保护。

  一些变压器线圈通过内置温度保险丝,可以具有过热保护功能。但由于温度保险丝为一次性元件,不适用于防止瞬间故障,如输出端短路或输入电压波动的故障情况。而CPTC(陶瓷PTC)元件则因为有阻抗较高的缺点,会导致在正常工作条件下也产生过量的功率损耗。当然通过提高绝缘材料的耐热等级,也可以免去进一步的保护措施,但直接结果是变压器成本大大增加。

   图2显示出PPTC元件用于变压器次级线圈的过热保护特性。实验中,线性电源适配器输出端被人为短路,因为线圈电阻的存在,输出电流在1A左右。此时,次级线圈的温度开始增加,当达到100℃的时候,在温度和电流的共同作用下PPTC元件动作,从而限制了次级线圈的电流,并制止了线圈温度进一步上升。

   选择PPTC元件时,需要考虑可以通过的最大负荷电流,最高的环境温度(通常为45℃)以及由变压器温度上升速率所决定的的最大动作时间。

4CLA短路保护

   由于汽车环境的多变以及要给各种精密电子设备供电,CLAs(汽车点烟器电源适配器)必须要在很宽的温度范围和充电条件下工作。所以,CLAs经常出现短路故障以及保险丝烧毁的情形。通常,这些情形是由过电流、充电器电路故障或反向充电所引起的。

    在CLA输入端接入过电流保护装置,可以防止此类故障以及可能导致的损坏。这种装置的具体保护要求是由终端设备的负载电流,以及CLA电源转换电路的故障敏感性决定的。通常是在CLA的输入端,应用过电压保护器件,如瞬时限压二极管提供过电压保护;结合自复式保护元件,如PPTC元件,即可提供一个“一插即可”的解决方案,对电路进行保护从而减少质保返修。

    图3显示一个典型的CLA电路图。图3中是一个PolySwich自复元件和一个瞬时限压(TVS)二极管提供输入保护。IC用于控制DC/DC降压转换器,由PPTC独用或与TVS相结合的保护措施可以防止以下4种故障造成的损坏。

1)负载过流故障的车载电话导致过大的电流,会使PPTC动作跳变至高阻状态,直至故障排除。

2)转换器发生故障时的汽车电路保护如果转换器或控制IC失效,短路电流会使PPTC动作跳变至高阻状态,以保护汽车的线路及保险丝。

3)发动机启动瞬间发动机启动时会产生瞬时峰值电压,该电压通常会被TVS二极管抑制。然而,如果瞬时电压值过大,可能会超过TVS二极管的承受能力。而如果使用了PPTC,就可以在过量电流损坏TVS以前动作并限流,从而起到保护TVS的作用。

4)极性倒置如果汽车电池极性倒置,TVS二极管将会正向导通,过大电流通过PPTC导致其动作跳变至高阻状态,从而保护了TVS,并将流过转换器的反向电压限制在TVS正向电压降水平下。

    选择PPTC元件时,必须考虑可能通过的最大负载电流、最高环境温度、以及为防止其它部件损坏所要求的最大动作时间。根据这些参数,可以选择插脚式或表面贴装式的自复器件。

5结语

   PPTC元件在广泛的电路保护应用中显示了卓越的性能,并有UL,CSA和TV的安全认证。PPTC为装置提供了可靠、自复式的保护,有效地减少了巨额的质保返修,大大提高了客户的满意程度。

关键字:电子设备  充电器  电源适配器 编辑:冰封 引用地址:便携式电子设备、充电器和电源适配器的过流保护元件PPTC

上一篇:基于数字化控制的开关电源的研究
下一篇:热电制冷摄像机配套电源的研究

推荐阅读最新更新时间:2023-10-18 15:46

利用LabVIEW图形化开发平台实现医疗电子设备原型系统的构建
医疗设备研究内容涉及众多工程学研究领域,如电子学、计算机、信息处理、光学、精密机械学等。随着医学的发展、治疗手段的多样化和相关工程领域技术的不断进步,医疗电子设备正变得日益复杂化。一般大型医疗设备由多个子系统组成,需要集成多种传感器、机械部件、电子元件,如FPGA或微处理器等,还会涉及到多种专业总线和协议,其研发周期也相当长,可能需要2年~3年甚至更长的时间。于是,如何缩短整个医疗电子设备系统的开发时间、提高创新程度便成为占领市场的要素。 对于一些小型公司来说,如何从激烈的市场竞争中站稳脚跟并脱颖而出是非常困难的事情。他们的核心技术人员也许是生物医学领域的专家,掌握了一定的专利或研究成果,但如何在团队人员非常有限的情况下,快速
[测试测量]
利用LabVIEW图形化开发平台实现医疗<font color='red'>电子设备</font>原型系统的构建
基于高功率充电器的大容量磷酸锂铁电池设计
病患照护领域其中一项关键趋势,就是越来越多病患在自己家中使用远端监视系统。造成此趋势的塬因显而易见-病患留院治疗的成本贵到让很多民众无力负担。因此,许多可携式电子监视系统结合了射频发送器,能把资料直接传送到医院内的监管系统,并交给相关人员检视与分析。这些种类的系统通常採用交流电作为主要电源,亦可使用电池供电,或插电∕电池两用的设计。冗余的电源设计是绝对必要的,如此才能在没有电源插座的地方确保装置仍能持续运作。此外,可携式医疗诊断装置的最新发展产品,例如医生与护士随身携带的装置,它们都採用电池作为主要电力来源,或当停电时尚能以电池作为备援的电源。这些类型的系统需要一个高效率的电池充电器电路。 除了医疗应用之外,包括如可携式银行交
[电源管理]
基于高功率<font color='red'>充电器</font>的大容量磷酸锂铁电池设计
小米GaN充电器引热议,究竟是真实需求还是营销噱头?
随着用户对充电器通用性、便携性的需求提高,GaN快充市场规模将快速上升,预计 2020 年全球 GaN 充电器市场规模为 23 亿元,2025 年将快速上升至 638 亿元,5 年复合年均增长率高达 94%。同时,综合性能和成本两个方面,GaN 也有望在未来成为消费电子领域快充器件的主流选择,而充电市场只是 GaN 应用的“冰山一角”。 小米日前发布年度旗舰手机小米10,同步推出一款售价149元的Type-C 65W GaN充电器成功吸引了投资者的目光,次日A股上市公司三安光电、海特高新、富满电子、云南锗业、士兰微等相关概念股纷纷获得大涨。 真实需求or营销噱头 据小米集团董事长兼CEO雷军介绍,GaN是一种新型半导体
[电源管理]
小米GaN<font color='red'>充电器</font>引热议,究竟是真实需求还是营销噱头?
高性价比的电源适配器AP3710及应用电路
    本文所讨论的低功率电源适配器主要针对输出功率5~15瓦的电源系统。主要有两类方案,即集成PWM控制器方案和分立PWM控制器方案。     图1是集成PWM控制器的典型应用图,U1采用DIP-8封装,内部集成了PWM控制器和功率MOSFET。变压器输入侧电路包括:由X电容CX和共模电感L-COM组成的输入滤波电路,由BD组成的整流桥电路,由U1组成的控制及功率电路。变压器输出侧包括:二极管D10等组成的输出整流滤波电流;固定电压基准U2等组成的稳压反馈电路。该方案由于功率器件和PWM器件集成在一个封装内,故集成度较高,但散热设计难。     图2是分立PWM控制器方案,U1多采用SOIC-8或SOT23-6, 内部只含PWM
[电源管理]
高性价比的<font color='red'>电源适配器</font>AP3710及应用电路
基于三段式充电控制方案的电动汽车智能充电器设计
1.引言 电池是电动汽车的关键动力输出单位,在铅酸蓄电池,镍镉电池,镍氢电池,锂电池和燃料电池等几种常用电池中,因为具有能量比大、重量轻、温度特性好,污染低,记忆效果不明显等特点,镍氢电池在电动汽车中使用很普遍。 然而由于充电方法的不正确,造成充电电池的使用寿命远远低于规定的寿命。也就是说很多电池不是被用坏的而是被充坏的,可见充电器的好坏对电池寿命有很大的影响。 基于此,本文提出一种使用3段式充电控制方案的智能充电器的设计方案,能有效的提高充电效率,延长电池的使用寿命。 2.控制方法介绍 常用的充电终止控制方法包括:定时控制法,电压控制法,电流控制法和综合控制法。 定时控制法是指用定时系统来控制整个充电时间,时间没定值到达时
[嵌入式]
安森美推出基于三相11 kW车载充电器平台的开发套件
到2025年,电动汽车市场的需求将达到1500万辆,包括插电式混合动力汽车(PHEV)和全电动汽车(EV) 。这些车辆中的每一个都将需要车载充电器(OBC)的事实如今正在转变为对此类应用的替代解决方案的需求日益增长,尤其是在功率水平和占地面积方面。 安森美半导体正为应对这一挑战作好准备,并推出了基于三相11 kW车载充电器平台的开发套件。这个新版本是现有车载充电套件产品组合的平台扩展。 有了这一新功能,安森美半导体为OBC解决方案的市场开发套件提供了广泛而独特的价值,它涵盖了交流充电的主流功率水平。 开发套件以及相关的广泛抵押品,引导设计人员和开发人员了解安森美半导体为OBC提供的广泛产品组合。从用于动力总成的SiC
[嵌入式]
安森美推出基于三相11 kW车载<font color='red'>充电器</font>平台的开发套件
MAX762太阳能密封式铅酸电池充电器研究
密封式铅酸电池内部有很大的能量损耗,这是个严重问题。在某些情况下,在几个星期内没有通过涓流充电 电流 ,就可能引起电池完全失去充电能力。 下图的 电路 可以防止这种情况的发生。2组3V的太阳能电池板分别连接了 二极管 ,当它们不产生电能时被二级管旁路,它们要供电MAX762 升压 变换器lCl。762是MAX761(12V输出)系列的15V输出型,在这里用于将6V提升到15V。C1和C2是去藕 电容 ,抑制开关型稳压 电源 lC产生的高低频杂散干扰成分。采用肖特基二极管D3,能量以磁场的形式存贮在电感L1中。用内部的开关信号将IC1的脚7开路过,所贮存的能量就转换为该电路的15V输出。MAX762脚8的V+(sense)输入用去保
[电源管理]
MAX762太阳能密封式铅酸电池<font color='red'>充电器</font>研究
东芝进一步扩展Thermoflagger™产品线---检测电子设备温升的简单解决方案
中国上海,2023年9月14日—— 东芝电子元件及存储装置株式会社(“东芝”)今日宣布,进一步扩展ThermoflaggerTM过温检测IC产品线---“TCTH0xxxE系列”。 该系列可用于具有正温度系数(PTC)热敏电阻的简单电路中,用来检测电子设备中的温度升高,六款新产品于今日开始支持批量出货。 为了使电子设备按规定运行,半导体和其他电子元件必须在设计参数范围内工作。内部温度是一个关键参数,特别是当它高于设计流程中的假设温度时,它就可能成为安全性和可靠性方面的一个主要问题,因此需要过温监测解决方案来检测任何温度升高。 当配置在具有PTC热敏电阻(其电阻值随温度变化而变化)的简单电路中时,Thermoflagg
[测试测量]
东芝进一步扩展Thermoflagger™产品线---检测<font color='red'>电子设备</font>温升的简单解决方案
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved