基于高功率充电器的大容量磷酸锂铁电池设计

最新更新时间:2012-06-05来源: 21IC关键字:高功率  充电器  大容量 手机看文章 扫描二维码
随时随地手机看文章

病患照护领域其中一项关键趋势,就是越来越多病患在自己家中使用远端监视系统。造成此趋势的塬因显而易见-病患留院治疗的成本贵到让很多民众无力负担。因此,许多可携式电子监视系统结合了射频发送器,能把资料直接传送到医院内的监管系统,并交给相关人员检视与分析。这些种类的系统通常採用交流电作为主要电源,亦可使用电池供电,或插电∕电池两用的设计。冗余的电源设计是绝对必要的,如此才能在没有电源插座的地方确保装置仍能持续运作。此外,可携式医疗诊断装置的最新发展产品,例如医生与护士随身携带的装置,它们都採用电池作为主要电力来源,或当停电时尚能以电池作为备援的电源。这些类型的系统需要一个高效率的电池充电器电路。

除了医疗应用之外,包括如可携式银行交易终端机、强固型平板电脑、存货控管与条码扫瞄装置,都需要大容量的单颗电池来减少体积与重量。各种锂电池仍旧是最受欢迎的选择。但这些电池想要快速充电,必须解决精準性与安全性两大棘手难题。此外,业界持续开发出全新的锂基化学材料的阳极∕阴极组合,并将产品导入主流市场。因此,许多应用开始採用磷酸锂铁(LiFePO4)电池芯,因为它们提供胜过钴锂离子∕聚合物电池芯的安全性及更长的週期寿命。这类化学材料亦提供钴基锂离子电池芯的其他优点,包括低自放电率及相对较低的重量。

除了改进安全性(比较能避免电池热变形的问题)及更长的週期寿命之外,磷酸锂铁电池还提供相对较高的尖峰功率,而且产生的环境污染也较少。医疗与工业应用通常愿意接受磷酸锂铁电池较低的容积能量密度,以换取更高的安全性与週期寿命。各种备援应用要求更高的週期寿命,而且能够进行高电流的放电动作。

如何获得更多电力

许多掌上型工业或医疗装置的电源架构,通常很类似搭载大萤幕的智慧型手机。一般而言,会使用一个3.7V(4.2V最后充电或浮动电压)锂离子电池作为主电源,因为它们具有高重量(Wh/kg)与容积(Wh/m3)单位的能量密度。过去,许多高功率装置都使用一个双颗7.4V(8.4V浮动电压)锂离子电池来满足电源需求,但自从市面上出现平价5V电源管理IC,促使越来越多掌上型装置改採较低电压的架构,以便让产品能使用单颗锂电池。典型的可携式医疗或工业装置都会搭载可观的功能,并搭配超大尺吋(用在可携式装置)萤幕。当使用3.7V电池作为电源,容量必须达到数千微安培-小时。要在短短数小时内为这类电池充饱电,必须使用数安培的高电流才能进行快充。

然而,即使当找不到能提供高电流的墙式电源转接器,使用者会想利用USB埠来为自己的高功率装置充电。为满足这些需求,电池充电器必须能在找不到电源可用时仍能以高电流(超过2安培)来进行充电,并且还能有效率地利用USB埠提供2.5至4.5瓦的电力。

此外,产品必须保护敏感的下行低电压元件,避免因过压状况导致受损,并将高电压直接传导到USB输入端的负载、墙式电源转接器、或是电池,藉以把因发热导致的电力损失减至最小。在此同时,许多必须安全地管理电池充电演算法,以及监视各项关键的系统参数。

由于锂离子磷酸电池採用较低的3.6V浮充电压,因此排除了使用标準锂离子电池充电器的可能性。若没有正确充电,可能对电池造成无法弥补的损坏。精準的浮充电压充电可延长电池的寿命。LiFePO4磷酸锂铁相较于钴基锂离子电池的优势包括较低的容积能量密度(每单位容积的储电量),以及若新电池过早深循环则有可能永久损坏。

归纳关键的设计限制因素:

• 高容量电池需要用高电流充电以及要求高效率

• 包括工业与医疗在内的许多可携式应用,可提供USB相容的便利充电功能

• 锂离子磷酸电池有较低浮充电压的特殊充电要求,但仍提供许多超越锂离子电池的好处

任何IC解决方案想因应上述的设计限制因素,就必须具备微型化与单片结构等特点,不仅能快速有效率地对单蕊电池进行充电,还得相容于各种现代的电池化学材料,例如像磷酸锂铁。这样的元件将扮演催化剂的角色,促使全球市场採纳搭载大容量电池的可携式工业与医疗产品。

解决单蕊电池可携式装置的电力挑战

想透过单一IC来达到上述要求,这样的任务看似几乎不可能达成,这时您可考虑LTC4156。延续锂离子型LTC4155的脚步,新推出的LTC4156是一款高功率、以I2C介面来控制的高效率PowerPath管理器,适合作为各种单电池可携式应用的二极体控制器与磷酸锂铁(LiFePO4)电池充电器,例如可携式医疗与基础建设装置、备援装置、以及以高能量密度电池供电的应用。

这款IC设计用来从各种电源有效率地传送15瓦的电力,并将功耗减至最小,并排除热预算方面的限制。LTC4156的切换式PowerPath架构能无缝地管理两个输入电源的电力分配,而且当输入电源有限时,能优先为系统供应电力。请见图1所示。

 

 

由于省下许多电力,LTC4156让输出负载电流超越输入电源汲取的电流,为充电中的电池提供最多的可用电力,而且不会超出输入电源的供应规格。例如,当从一个5伏特、2安培的墙式电源转接器供电时,IC的交换式电压转换器能让10瓦的可用电力达到超过85%的高效转换率,提供2.4安培的充电电流,进而达到更快的充电时间。不同于一般交换式电池充电器,LTC4156具备即时启动的运作模式,确保即使是深度放电后的电池,在插上插座的瞬间系统就有电源供电。USB OTG支援功能,不需任何额外的元件就能向USB埠传送5伏特的电力。

LTC4156的自我管理式全功能单芯磷酸锂铁电池充电器,能搭配15种使用者自选的充电电流设定,最高支援3.5安培的充电电流。充电器内含自动充电、侦测损坏电池蕊、可设定的安全计时器、具热敏电阻的温度合格充电、可设定的充电完毕指示∕终止以及可设定的中断产生等。

高效率的内部交换式转换器

LTC4156的交换式电压调整器扮演变压器的功能,让VOUT上的负载电流超过输入端电源汲取的电流,而且相较于典型的线性模式充电器,大幅增加电池充电器可利用的电力。先前的例子显示LTC4156最高能使用3.5安培的电流进行快速充电,带来更快的充电时间。不同于一般的交换式电池充电器,LTC4156具有瞬间启动的运作模式,即使电池损坏或经过深层放电,也能确保系统电力的可用性。如图2所示。

 

 

更安全的电池

当高速对电池充电时,务必要监视电池的安全性。当电池温度下降到摄氏0度以下,或是升高到超过摄氏60度(透过外部负温度係数NTC感温电阻来测温),LTC4156就会自动停止充电。除了这项自我管理功能之外,LTC4156还提供一个7位元拓展标度的类比至数位转换器(ADC)用来监视电池温度,并提供约摄氏1度的解析度(如图3所示)。再加上4种可用的浮充电压设定以及15种电池充电电流设定,这款ADC能用来根据电池温度建立客製化的充电演算法。

 

 

我们可利用一个简单的2线式I2C埠来存取NTC ADC结果,藉以调整充电电流与电压设定。通讯匯流排则让LTC4156能指示额外的状态资讯,例如输入电源状态、充电器状态、以及故障状态。USB OTG支援功能,无须用到额外的元件就能把5伏特电源传回到USB埠。

支援两种电源输入(例如USB与墙式电源转接器),对于如平板电脑或工业条码扫瞄机在内的许多可携式应用已经足够。但可携式装置的设计师仍持续寻找各种方法,利用任何可取得的电源来为电池充电。LTC4156的双输入式优先权限多工器能自动选择最适合的输入电源,并根据使用者预设的优先顺序进行挑选(预先的优先顺序会传送到变压器的输入端)。过压保护(OVP)电路会同时保护两个输入端,避免因意外导入过高的电压或逆电压而造成损坏。LTC4156的理想二极体控制器能保证即使当输入电源不足或缺乏时,VOUT 也永远能有充裕的电力供应。为了在装置连结休眠中的USB埠时能儘可能降低电池的耗电,配置在VBUS到VOUT之间的LDO元件,能为应用提供USB休眠模式电流。为了完全消除产品从出厂到售出这段期间的电池电力消耗,出货与库存模式功能,能把已经极低的电池待机电流降低到接近于零的程度。

结论

现今可携式工业与医疗装置的产品设计师面临极艰鉅的任务-尤其是在供电方面。各领域的企业不断要求各种功能,这些都需要更多的电力,因而必须搭配更大的电池。此外,顾客希望能利用任何可取得的电源,享受便利的电池充电功能。磷酸锂铁电池逐渐成为主流选择,因为它们天生具有安全、低浮动电压、更长的週期寿命、低自放电率、以及相对较轻等优点。但它们和任何可充式电池一样,处理时都必须小心谨慎。可携式电源的趋势包括各种设计上的挑战,LTC4156让业者的工作变得更为简单。在低电压系统方面,LTC4156有效率地提供最高3.5安培的电流,以及各种高效能与安全方面的特性。

关键字:高功率  充电器  大容量 编辑:探路者 引用地址:基于高功率充电器的大容量磷酸锂铁电池设计

上一篇:提高变频器抗电压波动能力的措施
下一篇:电源滤波器的原理及其作用

推荐阅读最新更新时间:2023-10-18 16:49

上新闻联播的高功率半导体技术:给激光器安上中国“心”
国家大力推广中国创造,也鼓励全名创业。国家政策宣传的窗口 CCTV《新闻联播》当然成为创造案例的集结点。看到 高功率半导体激光器上新闻联播真是有点惊讶,半导体也 扬名 了一下。 激光器是先进制造领域不可或缺的设备,高功率激光器过去一直被少数几个国家垄断。要打破垄断,必须突破激光器最核心的 叠阵 技术。中科院西安光机所研究员刘兴胜,就是这样的一位 破阵者 。 最近,刘兴胜和他的团队正在对 无铟(yin)化 叠阵的新一代应用产品进行测试,新产品还没有上市,就已经收到了国内外2000多万元人民币的订单。 叠阵,相当于激光器的 心脏 ,直接决定着激光器的
[半导体设计/制造]
上新闻联播的<font color='red'>高功率</font>半导体技术:给激光器安上中国“心”
简化锂离子(Li+)电池充电器测试
摘要:由于Li+电池充电器的充电过程会持续一个小时甚至更长的时间,利用实际负载(即电池)对充电器进行测试将非常耗时。本应用笔记介绍了一种简单的Li+电池仿真方法,与采用实际电池进行测试相比,这种方法能够更加方便地测试Li+电池充电器。 类似文章还发表在Maxim工程期刊第64期(PDF,2.5MB)。 概述 锂离子(Li+)电池比其它化学类型的电池更脆弱,对于违规操作具有非常小的容限。因此,Li+电池充电电路比较复杂,要求高精度电流、电压设置。如果无法满足这些精度要求,充电器可能无法将电池完全充满,进而降低电池寿命,或影响电池性能。 鉴于对Li+电池充电器的这些要求,对充电器设计进行完全测试并在整个工作范围内进行分段测试非常
[电源管理]
简化锂离子(Li+)电池<font color='red'>充电器</font>测试
三星W21 5G通过3C认证入网:配25W充电器
上周日,三星新一代心系天下系列 W21 5G 已经通过国家 3C 认证。通过认证信息可以发现,该机依然采用了 25W 的充电适配器。此外,该机型号毫无疑问地定为 SM-W2021,且支持 5G 网络。   本月 14 日,三星 W21 5G 可折叠手机已通过无线电认证,支持两张实体 SIM 卡。IT之家了解到,之前的三星折叠屏手机仅支持一张实体 SIM 卡和一张 e-SIM 卡。   去年的三星 W20 5G 与三星 Galaxy Fold 极为相似,甚至有网友认为是同款机型的不同名称。因此不排除三星 W21 5G 与三星最新的 Galaxy Z Fold 2 有一定关联的可能。   定价方面,作为参考,三星 W20
[手机便携]
三星W21 5G通过3C认证入网:配25W<font color='red'>充电器</font>
恒流自停6-24v充电器原理
恒流自停6-24v充电器 原理 本文介绍的简易充电器可对24V以下的蓄电池进行自动充电,最大充电电流可达2.5A,并具有恒流充电及充满自停功能。 图4-9为自动充电器电原理图。220V市电经变压器T降压获得次级电压U2,经VD1~VD4格式整流输出直流脉动电压,由正极A点经过继电器常闭触点K1-2、R4、电流表PA、VT1,通过蓄电池GB、VT2至负极B点对GB进行充电,调节RP1的大小,即调节VT1、VT2的基极电位,从而调节VT2的Icb,即充电电流大小。由于蓄电池端电压能反映其充电情况,故以标称电压为12V的蓄电池为例,当电池电压上升到(12/2)*2.5=15V时,VT3饱和导通,K1得电吸合,常闭触点K1-
[电源管理]
恒流自停6-24v<font color='red'>充电器</font>原理
高功率因数的方法
用电功率因数是指用电负荷的有功功率与视在功率的比值。电力用户用电设备,如变压器、感应电动机、电力线路等,除从电力系统吸取有功功率外,还要吸取无功功率。无功功率仅完成电磁能量的相互转换,并不作功。无功和有功同样重要,没有无功,变压器不能变压,电动机不能转动,电力系统不能正常运行。无功功率的消耗导致用电功率因数降低,因而占用了电力系统发供电设备提供有功功率的能力,或增加了发送无功功率的设施,同时也增加了电力系统输电过程中的有功功率损耗。因而世界各国电力企业对电力用户的用电功率因数都有要求,并按用户用电功率因数的高低在经济上给予奖惩。 随着经济的日益发展,电力需求不断提高,伴随而来的突出问题是能源无效的巨大消耗,资源利用率低下1电
[电源管理]
全面为你解读高功率LED照明透镜特性
  大功率LED透镜/反光杯主要用于大功率LED冷光源系列产品的聚光,导光等。大功率LED透镜根据不同LED出射光的角度设计配光曲线,通过增加光学反射,减少光损,提高光效(而设定的非球面光学透镜)。下面着重讲解PMMA材料的二次聚光大功率LED透镜。   一、LED透镜的材料种类   1、硅胶透镜;   (1)因为硅胶耐温高(也可以过回流焊),因此常用直接封装在LED芯片上;   (2)一般硅胶透镜体积较小,直径3-10mm;   2、PMMA透镜   (1)光学级PMMA(聚甲基丙烯酸甲酯,俗称:亚克力)   (2)塑胶类材料,优点:生产效率高(可以通过注塑完成);透光率高(3mm厚度时
[电源管理]
全面为你解读<font color='red'>高功率</font>LED照明透镜特性
安森美半导体的开关电池充电器荣获《今日电子》之“Top 10电源产品奖”
2013年9月12日 – 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)今天宣布,公司针对智能手机、平板电脑及其它手持设备电源能效而优化的NCP185x系列开关电池充电器荣获《今日电子》(EPC)的“Top 10电源产品奖”。EPC是中国最权威的电子行业杂志之一,这是安森美半导体连续第11年获该杂志颁发奖项。 安森美半导体应用产品部高级营销总监郑兆雄说:“我们连续第11年获此奖项的确是极大的荣誉。这奖项进一步彰显安森美半导体持续致力于便携电子产品市场创新及提高性价比的成果,突出公司在电源管理及便携方案的实力。我们将继续开发创新及高性能的电源方案,帮助工程师解决他们的设计挑
[电源管理]
PWM技术在单片机控制智能充电器中的应用
介绍了PWM 技术的基本原理,并详细介绍了在智能充电器中采用的PWM技术的方法和其优缺点,并针对问题提出了更加合理的解决方案,本文介绍的方法主要面向镍氢和镍镉电池充电器等应用 PWM技术的基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用 PWM软
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved