功率转换拓朴架构及EMI噪声

最新更新时间:2011-09-23来源: 互联网关键字:功率转换  拓扑架构  EMI噪声 手机看文章 扫描二维码
随时随地手机看文章

所有的电子设备都是以直流电供电的,通常是经过 AC 整流。再由 DC-DC 转换器转压,转到负载所需的电压。目前,大部份的 DC-DC 转换器己普遍以高频率的开关技术为基础,有效的高频率开关一直被视为模块功率密度大小,性能表现优劣的关键。开关频率愈高,所用的磁性元件和电容愈小,反应时间更快,噪声更低,所需滤波器较细小。

但是所有的 DC-DC 转换器还是会产生电磁干扰 (EMI) 或者噪声的,而所产生的噪声水平,不论是共模的,差模的或者是辐射噪声,会因为不同的生产厂,或者是采用不同的转换技术而产生很大的差异,这些差别的根源在于这些噪声是如何产生的。

虽然没有一种功率转换拓朴结构是完美的,但有些拓朴结构是特别配合某些应用要求的。市面上有上百种的DC-DC 转换器,各有不同的设计和拓扑结构,大体可以归为两大类:脉宽调制式 (PWM) 和准谐振零电流开关 (ZCS) 两种。

要完全了解数量这么多的拓朴结构是非常艰巨的任务,本文只着重分析两种主流拓朴结构的噪声表现。具体比较固定频率 DC-DC 转换器 (PWM) 和变频准谐振 DC-DC 转换器 (零电流 ZCS) 的表现。

脉宽调制式与准谐振零电流开关的比较 

脉宽调制式 (PWM) 模块的功率密度是有局限的,因为它需要在工作效率和开关频率间作取舍。问题的核心在于“开关损耗”。开关元件在瞬时导通和关断时,使电感电流产生不连续性的状态,因而产生热量。由开关损耗引发的功耗,会直接随着脉宽调制式模块的开关频率增高而增大,直至它变为一个显着的耗损成因,达到了那一点,效率会迅速减低,开关元件所承受的热及电能应力变得无法处理。这种非零电流开关模块具有开关损耗的属性,变为开关频率障碍,限制了它提升功率密度的能力。

准谐振的零电流开关转换器采用正向开关拓朴,只在电流经过零的时侯才开关,克服了开关频率障碍。每个开关周期传送等量的“能量包”到模块的输出端。每个“开” 与“关”都在零电流的瞬间进行,形成一种近于没有功耗的开关。零电流开关转换器的工作频率可超出 1 MHz。它避免了传统拓朴结构那不连续性电流的特性;实现“无功耗” 的把能量由输入传输至输出,大大减低传导和辐射噪声。

由 PWM 和 ZCS 转换器衍生出来的噪声是有很大分别的。图1 比较 PWM 和 ZCS 转换器的传导噪声,很明显的,ZCS 转换器的波形是一个正弦波而不是方波。此外,由于电流的波形没有几乎垂直上升和下降的尖削部份, 而且谐波含量较低,减少寄生元件的应力,因而噪声更低。相反,PWM 的输入电压是以固定频率开关 (一般是数百 kHz),做成一连串的脉冲,利用调节脉冲的宽度来为负载提供正确的输出电压及足够的电流。满载时,电流的波形好像是一个方波 (图2)。


  
图1 – 带共模扼流圈的零电流开关转换器 (图左) 和带滤波器的脉宽调制转换器 (图右) 的传导输入噪声频谱。


  
图2 - 零电流开关和脉宽调制式架构的电流波形

很多电源工程师都以为,滤掉固定频率转换器所产生的噪声比滤掉变频转换器的来得容易,事实刚好相反 1。 这只是“固定频率”这名词带来的错觉。基本上是个“误称”。因为两个架构都同时拥有大体固定频率的元素,和因应操作点而改变的不固定频率元素。

转换器规格: 48 V 输入,5 V 输出,30A。  

图2 比较电流流到主开关的波型图。准谐振转换器的频宽或导通时间 T1 是固定的,而开关频率 T2 是可变的。相反, PWM 转换器的开关周期是固定的,而频宽是可变的。图3 显示这两个拓扑产生的噪声图谱。


  
图3 – PWM (上图)和零电流开关(下图)的电流波形和频谱。注:波形并不按比例绘制。

然而,在变频的设计,因为它基本上是一个半波整流的正弦波,没有涉及电流波型的上升及下降陡边的高频份量。因此,变频转换器的波型频谱幅度较低,带宽也较窄。

在 PWM 变换器,大部分能量是在固定频率及其奇数倍数﹝谐波﹞上的。一个100 kHz 的 PWM 变换器,它的传导噪声主要在 100 kHz,有一些在 300 和 500 kHz。因为它是方波,在10 – 30 MHz 间有明显的谐波,也就是高的 di/dt 激发了转换器内的寄生元件。需预备足够的输入滤波器来滤掉满载时的 100 kHz 噪声。这些转换器的波形,频谱噪声水平较高,谐波分布范围较广。

显然,如要尽量减少DC-DC转换器的噪声,第一个步骤应是选择一个合适的拓扑架构,如固有共模噪声较低的零电流开关。此外,在噪声敏感的应用,应避免使用具以下特性的转换器。如把控制器件安装在铜板,这样会使把初级控制元件和次级控制元件间,透过铜板产生寄生电容,因而形成更高幅度的共模噪声。

无源 EMI 滤波器

虽然,电源模块通常会带内部输入和输出滤波器;但如果要满足系统要求,或需要符合认可的规格如 FCC,以及欧盟有关电源系统传导到电网的噪声标准,便需要外加滤波器。许多电源工程师会自己动手设计方案,大部份 DC-DC 转换器制造商会提供详细的应用笔记,并派出具丰富知识和经验应用工程师协助解决这些问题。此外,还有一些 DC-DC 转换器的供应商,提供交流前端和 EMI 滤波器模块。使用这些过滤器模块不仅节省时间,而且质量,性能比较有保证。这些 EMI 滤波器是专为配合供应商的转换器模块而设计的,只要布线妥当,把转换器模块和滤波器配套使用, 保证能满足特定的 EMC 规格。

在美国和欧洲,传导噪声是按 FCC 和 VDE 标准A 级和B 级限制严格规管的。在美国,工业设备的传导噪声应满足 FCC 标准 A 级要求,家用电器的传导噪声应满足更严格的 FCC B 级要求。在欧洲,所有国家均要求工业设备和家用电器符合 EN55022 (或 VDE) B 级标准。

现时多数的开关电源的开关频率在 100 kHz 至   1 MHz 之间。通常反射到电网之传导噪声频谱上的主要尖峰来自开关频率之基频及其谐波分量。

这些传导噪声标准,如 EN55011 和 EN55022,规范了从转换器反射到电网的传导噪声在 150 KHz 至 30 MHz 频带间不能超过规定之上限。要符合这些要求,所有传导噪声,即频谱上的尖点部份,必须低于规定的限度。

这些 EMI 滤波器通常是造成一个器件,(配置与图4 相似) 。它是一个带穿孔引脚的器件,内配共模扼流圈和 Y-电容器 (线到地),另加两个电感器和一个 X-电容器(线到线)。由 Z1 提供瞬变保护,这样子的滤波器有足够的衰减能力,可以符合级别 B 的传导噪声限制。


  
图4 –符合EN55022,B级标准的EMI输入滤波器

此外,电容器、电感器,和滤波器(有源和无源)等器件都是经常用来衰减传导噪声的 (无论是共模或差模噪声) 。下文会讨论把各种器件遂一加上后的滤波表现,并提出一种新的 EMI 方案。

图5a 左边显示一个 48 V DC-DC 转换器,在输入端接上一个差模电容 C1。 这个单一的 120 F,100 V 电解电容,是用来保持低输入阻抗,稳定电压和确保良好的瞬变反应。它为模块储能,应尽量靠近输入端,达到最佳效果。

以这个配置为起点,图5a 右边显示一个 48 V 输入,150 W 满载工作的 DC-DC 转换器连接一个差模电容后的谐波水平,以及按级别 A 及 B 要求的EMI 和谐波标准。明显地,只加上一个差模电容,是不能满足要求的。

图5b 显示加上旁路电容及差模电容的情形,噪声水平虽仍未能达到标准,但已有很明显的改善。注意每个接在输入和输出端上的旁路电容是与基板接地的。这些电容是业内常用的 4700 pF,100 V 的 Y-电容。Y-电容对衰减转换器衍生出来的噪声是十分有效的。

48 V 转换器满载时所产生的噪声是较高的,它比一个 3.3 V 半载的转换器要高。无论如何,在图5b 可以看到明显的改善。

再加上一个 27 µH 的差模电感 L1,在图5c 看到,48 V 转换器在低频部份仍然不达标,噪声水平还是高于 B 级的限制。

图5d,是用共模扼流圈取代差模扼流圈,共模扼流圈本身也具差模电感,可取代差模扼流圈。共模扼流圈可以增大 Y-电容的衰减能力,因为共模扼流圈对转换器产生之共模噪声形成高阻抗,使噪声沿着较低阻抗之路径,经 Y-电容传到大地。
 

图5 - 48 V, 150 W DC-DC转换器接上不同器件的噪声频谱。
a.差模电容 b.旁路电容 c.差模电感 d.共模滤波器 (去掉差模扼流圈)

48 V 转换器的噪声现在只是稍稍高于级别 B 标准,需要稍稍加些滤波器。3.3 V 转换器加共模滤波器以后,无论是满载或半载,都完全符合级别 B 的标准了。

有源 EMI 滤波器。电子行业不断要求产品体积更小巧,和拥有更多功能,这趋势已是不可逆转的。系统的体积不断压缩,要把更多的功能挤在板上或者是机架内,仪器之间互相干扰的机会大增。由于频率增加和电压水平下降,电磁干扰控制,成为一个非常重要的设计任务。要把电磁干扰好好的控制,是十分复杂的事情,整个设计受到多种因素影响,要用上多种滤波器 (有源或无源的) 来把传导噪声管理好。

与无源滤波方案比较,有源滤波器可减少共模扼流圈所占用的空间,令整个元件体积只有1" x 1" x 0.2",是非常纤薄的表面贴装的元件。总的来说这方案节省占用电路板空间,而且元件很薄,可让空气在上面流动,帮助散热。

有源 EMI 滤波器 (见图6 QPI) 可衰减 150 KHz 至 30 MHz 间的共模及差模噪声,满足 EN55022 (CISPR22)要求。


  
图6 - 有源滤波器 (QP1) 与 DC-DC 转换器连接图。
Cin,C1,C2,C3 及 C4 的值应由 DC-DC 转换器生产厂提供。

图7 是连上有源滤波器与没有连上滤波器的噪声测试图。测试条件按 CISPR22 标准。结果显示带载的 DC-DC 转换器,它的总噪声低于 EN55022 级别 B 准波峰检测水平,显示有源滤波器有效的滤掉传导噪声。


  
图7- DC-DC转换器传导 EMI 噪声。
连上有源滤波器 (下图);没有滤波器 (上图)

选择和评定 EMI 滤波器时,设计人员应该留意,他们必须测试滤波器用在他们的产品上的表现,而且测试装置及条件必须符合其产品所须遵循的 EMI 标准。在选择滤波器和合适的设计时,应参考未加滤波器时波幅和频谱。

一个产品的传导噪声,应包含差模和共模噪声,可能还包括辐射噪声,那要取决于 EUT 屏蔽和布线屏蔽的测量装置。IEC 国际电工委员会的 CISPR 16-2-1,列明量度传导干扰的方法。

滤波器的性能是非常依赖输入母线和负载阻抗的。并不能单从零偏压,50  插入损耗数据推断出来。滤波元件, 仪器接地,以及噪声源阻抗等都会影响最后的噪声表现, 会改变相关频谱的幅度和相位。

有源 EMI 滤波器,可衰减 150 KHz 至 30 MHz 间的共模及差模噪声,满足 EN55022 要求。它透过感应流向母线的共模电流,在屏蔽板产生低阻抗,把噪声引导到产生噪声的源头。当有源 EMI 滤波器按图6 所示连接妥当,控制回路会主动的驱动屏蔽脚,减少在母线内的共模电流,直到共模电流值衰减至如图7 所示水平。


 

关键字:功率转换  拓扑架构  EMI噪声 编辑:冰封 引用地址:功率转换拓朴架构及EMI噪声

上一篇:便携设备访问片外SDRAM的低功耗设计研究
下一篇:仪器仪表应用:变频器工作原理

推荐阅读最新更新时间:2023-10-18 15:48

超低压差线性稳压器的拓扑架构及应用趋势
近年来,低压差稳压器(LDO)在各类 电子 设备,尤其是对电能有苛刻需求的消费类电子中,得到了广泛的应用。但随着更低压差应用需求的发展,由于LDO拓扑架构的限制,越来越难以满足应用的需求。于是,基于新型拓扑架构的超低压差稳压器(ULDO)应运而生。   ULDO与LDO的差异   LDO是一种用途极为广泛的 集成电路 (IC),它的优点有: 电路 架构简单、输出纹涟波很低、外部组件很少且简单等等。一般的LDO架构为:一个误差放大器驱动一个P型 MOSFET ,利用回授电位与参考电位做比较,使输出保持在正确的 电压 。但是当系统中需求的是超低压差、低输出电压(0.8~1.8V)、高输出 电流 时,用传统
[电源管理]
超低压差线性稳压器的<font color='red'>拓扑</font><font color='red'>架构</font>及应用趋势
面向能量收集的低功率转换
在我们的周围存在着许多的环境能量,能量收集的传统方法一直是借助太阳能电池板和风力发电机。不过,新的收集工具允许我们利用各种各样的环境能量源来产生电能。而且,重要之处不是电路的能量转换效率,而是那些可以用来给电路供电的 平均收集 能量数量。例如:热电发生器可将热量转换为电力、压电组件可转换机械振动、光伏组件用于转换太阳能 (或任何光子源)、而电流组件则可从湿气实现能量转换。这就有可能给远程传感器供电,或者对电能存储器件 (例如:电容器或薄膜电池) 进行充电,以便微处理器或发送器能够无需本地电源而接受远程供电。 然而,正是在功率谱的 低 端 (这里,WSN 和传感器中的毫微功率转换变得越来越普遍) 才需要那种可以使用非常低的功率
[电源管理]
面向能量收集的低<font color='red'>功率</font><font color='red'>转换</font>
Allegro MicroSystems推出新型隔离栅极驱动器IC,可实现领先的功率转换密度
AHV85110为Power-Thru产品系列中的首次发布,能够提供2倍功率密度,以及更简单、更高效的系统设计 美国新罕布什尔州曼彻斯特 - 运动控制和节能系统传感和功率半导体解决方案的全球领导厂商Allegro MicroSystems(以下简称Allegro)宣布推出 新型power-Thru隔离栅极驱动器AHV85110 ,这款隔离栅极驱动器提供了一种能够驱动GaN FET的单封装解决方案,是Power-Thru产品系列中的第一款产品。与市场上竞争产品相比,该解决方案占位面积减少50%,效率提高40%。 全球清洁能源市场要求汽车和工业领域的功率系统设计师更高效地产生、储存和使用能源,而宽带隙碳化硅(SiC)和氮
[电源管理]
Allegro MicroSystems推出新型隔离栅极驱动器IC,可实现领先的<font color='red'>功率</font><font color='red'>转换</font>密度
开关电源转换器有源功率因数校正技术
  由于输人端有整流元件和滤波电容,许多由整流电源供电的电子设备,使市电输人端的 功率因数 仅为0.6~0.65。用有源 功率因数 校正技术( 简称APFC)可以把输入 功率因数 提高到0.95~0.99,使输人电流的THD小于10%,既可以治理对市电电网的谐波“污染”,又可以提高 开关电源 的整体效率。单相APFC国内外开发较早,技术也比较成熟;三相APFC则类型较多,还有待进一步的研究与发展。   一般的高功率因数AC/DC 开关电源 由两级主电路组成。在整流器和DC/DC 转换器 之间,加一级前置PFC 转换器 ,使交流输人端的功率因数提高到 接近于1,同时又使输出直流电压可以调整。两级高功率因数AC/DC 开关电源 ,至
[电源管理]
DC-DC转换器的电源转换效率和功率电感性能的解决方案
  随着无线手持设备、PDA以及其它便携式电子产品的外形尺寸不断缩小,其复杂程度也持续增加,设计工程师将要面对越来越多的问题,包括电池寿命、板载面积、发热量及功率消耗。   当使用DC/DC转换器时,效率是最主要的目标。许多设计需求都涉及到将确定的电池电压转换至某个较低的供电电压。尽管线性稳压器可实现此目标,但却无法达到基于交换调节器(switching regulator)类设计的效率。本文将探讨若干个设计人员在折衷解决方案尺寸、性能集成本所需面对的,最常见的问题。   大信号响应vs.小信号响应   开关变换器基于非常复杂的稳压电路配置,以保持任意负载情况下的高效率。现代的CPU核心电源需要稳压器具有快速及顺畅的大信号响应
[电源管理]
DC-DC<font color='red'>转换</font>器的电源<font color='red'>转换</font>效率和<font color='red'>功率</font>电感性能的解决方案
现代电源架构联盟发布大功率先进总线Dc-Dc 转换器全新标准
现代电源架构(AMP)联盟发布一项全新标准。随着云计算和物联网(IoT)不断推动更高的功率密度和电源要求,该标准旨在助力高性能数据通信和电信设备的设计人员保持领先一步。 HPABC-qbAMP 标准最初支持1000 W输出功率,为分布式电源系统内的大功率先进总线dc-dc转换器制定了共同的机械和电气规范。 全新 HPABC-qbAMP 标准建立在早前发布的 ABC-ebAMP 和 ABC-qbAMP 标准之上,后两个标准分别定义了范围264 至 300 W和420至468 W的八分之一砖和四分之一砖先进总线模块的标准。尺寸为58.42 x 36.83 mm的 HPABC-qbAMP 占据板空间与标准四分之一砖转换
[电源管理]
现代电源<font color='red'>架构</font>联盟发布大<font color='red'>功率</font>先进总线Dc-Dc <font color='red'>转换</font>器全新标准
Dialog推出峰值功率60W AC/DC转换
DIALOG半导体有限公司的最新AC/DC电源IC采用40W功率设计实现高达60W峰值功率,iW1770峰值功率技术无需超大电源组件和散热装置也可满足产品高功率密度设计 高集成电源管理、AC/DC、固态照明和蓝牙®智能无线技术提供商Dialog半导体有限公司(法兰克福证券交易所代码:DLG)今日发布其最新的iW1770 PrimAccurate™初级侧控制器。该产品使用40W电源提供60W峰值功率,从而消除对超大电源组件设计的需求,支持适用于超极本(Ultrabooks™)、网络设备等家用电子产品的紧凑、轻便和高功率密度的适配器。 传统电源设计必须在尺寸上进行调整,以满足系统对峰值(最大)功率需求,该峰值功
[电源管理]
Power Integrations五款全新AC-DC功率转换IC
用于高能效功率转换的高压集成电路业界的领导者Power Integrations公司近日宣布推出五款全新AC-DC功率转换IC,为其广受欢迎的TOPSwitch-HX系列再添新丁,这五款开关IC均采用该公司最新的2毫米高e-SIP-L封装。新产品非常适合于设计超薄型电源适配器,应用于笔记本电脑、打印机、视频游戏机,以及日趋薄型化和高能效的LCD电视和显示器等产品。 TOPSwitch-HX系列产品在轻载到满载的不同条件下均具有高效率,能轻松满足各项政府法规对所有功率水平的能效要求,所惠及的应用范围非常广泛。功率器件以前所采用的传统型TO-220功率封装在PCB板上的装配高度达18毫米,往往使散热片垂直放置,从而使
[嵌入式]
热门资源推荐
热门放大器推荐
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved