互补管脉冲电路原理及应用电路

最新更新时间:2011-09-26来源: 互联网关键字:互不管  脉冲电路 手机看文章 扫描二维码
随时随地手机看文章

通常的双管脉冲电路,总是一只管导通,另一只管截止。但是互补管脉冲电路不同,它具有如下特点:
(1)两管同时导通或同时截止。
(2)一端输出波形为陡上升慢下降,另一端输出波形为陡下降慢上升,因此,两端输出通过微分后,就获得一对极性要相反而又十分陡直的尖脉冲。
注意:这种电路引起电源功率波动较大,因为当两管从截止转至导通时,电流从零增至某数值。

一、互补管双稳态电路
互补管双稳态电路见图1(a)。当接通电源后,若无触发信号作用,由于集极电流极小,Rc1、Rc2的端电压[供电给两管的偏流]也很小,故两管都截止,电路处于一种稳定状态。

              图1、互补管双稳态电路 
当触发脉冲作用下,设BG1由截止转入放大,并产生下述的雪崩式正反馈过程 

 
 
很快地使两管饱和导通,处于另一稳定状态,电容C1是加速电容,由图1(b)可见,uc1从Ec陡直地下降至零,而Uc2却从零陡直地上升至Ec。
要使状态回到原来的稳态,必须供给BG1或BG2的基极一个负尖脉冲,正反馈的翻转过程与上述类似,电路图1(C)是单端输出电路,图2是另一类互补双稳电路,它直接从普通的双稳电路转变过来。

  
 
二、互补管多谐振荡电路
互补管多谐振荡电路见图3。该电路仍然由两级集基阻容耦合的倒相器组成,当电路接通电源时,两管不能马上导通,因为CA、CB的充电路径是:Ec→R2→CA→Rc1;CB的充电路径是:Ec→Rc2→CB→R1.当CA和CB充电到一定数值后,UCA、UCB作为两管基极回路的正向偏置电压,使Ib1、Ib2增加,由于正反馈的作用,很快地使BG1、BG2饱和,这是一种暂稳态。

 

              图三、互补多谐振荡电路 
饱和一开始,CA经Rb2、BG2的发射结构及电阻Rc1放电(CA放完电后,双被Uc1反向对CA充电,这时,UcA为左正右负)而CB通过Rc2、BG1的的发射结及Rb1放电,随着CA、CB放电过程,Ube1不断增加,而Ube2不断减小,直至两管由饱和退至放大状态,从而引起下列“雪崩”式的正反馈: 

 
 
结果使BG1、BG2截止,接着CA、CB又进行充电,如此重复。就可获得如图3(b)的输出脉冲波,设电路对称,即CA=CB=C,Rb1=Rb2=Rb,R1=R2=R,Rc1=Rc2=Rc脉冲宽度为:
t1=c(Rb+rbe)In{Ec/[Ubes+(Ec/Rb)Rc]}
t2≈0.7Rc
选择晶体管的β应满足Rb<βRc,根据图3(a)电路的参数可算出t1=10毫秒,t2=750毫秒,占空比(t1/t2)=75.

三、其他的互补管脉冲电路
其他的互补管脉冲电路有以下三种。
1、互补管单稳态电路
图4示出两种形式的互补管单稳态电路,图4(b)为常态时两管饱和的互补管单稳态电路。当满足条件,R2<β1、R1及R3<β2、R4时电路处于两管饱和的稳态,当负脉冲作用于BG1基极,BG1退出饱和,且引起反应Uc1↑→Ub2↑→Uc2↓→Ub1↓。正反馈连锁反应的结果,使BG1、BG2均截止,此为暂稳态。此时C通过R2、R4及电源放电,放电完后又进入两管饱和的稳定状态。二极管D是防止C的电压击穿BG1的基-射结,脉冲宽度为:
tr=0.7(R2+R4)C
图4(b)为常态时两管截止的互补单稳态电路

                   图4、互补管单稳态电路 
2、互补管施密特触发器
图5为互补管施密特触发器,本电路是依靠直流电位触发的施密特电路,在工作过程中。两管同时饱和或同时截止。
当ui处于低电平时,由ui和-Eb所引起的ub1为负值,BG1截止,又因R3无电源,所以BG2也截止,处于一种稳定状态。
当ui上升到高电平时,ub1达到BG1的导通阀电压,BG1开始导通,经过BG1、BG2的连锁正反馈作用。最后使BG1、BG2同时导通,这是另一种稳定状态。
R5与电路因差的大小有关,R5越大,回差就越小。

 

     图5、互补管施密特触发器 


         图6、互补管的锯齿波电路 
3、互补管的锯齿波电路
图6为互补管的锯齿波电路,这是自激式互补的锯齿波电路,其中由BG1、BG2组成开关器,以控制定时电容C的充放电,BG3为恒流管。
当BG1、BG2均截时,恒流Ic3对C充电(极性如图6所示)输出电压uo随时间线性下降,这是扫描电压的正程,当电容电压Uc下降到BG2的导通阀电压时,BG2开始导通,BG1、BG2经过正反馈连锁反应时到达了饱和状态,此时C经过BG1、BG2一直停留在饱和状态而不返回到截止状态。

关键字:互不管  脉冲电路 编辑:冰封 引用地址:互补管脉冲电路原理及应用电路

上一篇:隧道二极管脉冲电路原理及应用电路
下一篇:光电耦合器组成的脉冲电路原理及应用电路

推荐阅读最新更新时间:2023-10-18 15:48

用Protel99SE实现脉冲电路的仿真
摘要:针对Protel99SE的数字电路模型不适用于脉冲电路仿真的缺陷,通过实例论述了用创建子电路模型和创建层次式模块电路来实现脉冲电路的仿真测试。 关键词:电子设计自动化 Protel99SE 仿真 子电路 层次式电路 Protel设计系统作为电子设计自动化(EDA)软件中的佼佼者,一直受到广泛的欢迎。Protel99SE是Protel公司2000年推出的最新版本,内部集成了功能强大的模数混合仿真器,采用Spice仿真内核,含有丰富的器件模型库,能快速简便地实现大部分模块电路和数字电路的仿真 。且仿真结构十分精确,提高了电路设计的效率和效益。由于Protel99SE的数字电路(门电路)模型没有采用Spice模型,而是采用类C语言(
[半导体设计/制造]
脉冲发生器电路图4
脉冲发生器电路图4
[模拟电子]
<font color='red'>脉冲</font>发生器<font color='red'>电路</font>图4
LED驱动电路脉冲调制PWM电路设计
  本文主要从电子电路、热分析、光学 方面阐述了如何运用LED 特性进行设计。LED照明 作为新一代照明受到了广泛的关注。仅仅依靠LED封装 并不能制作出好的照明灯具。 这次主要针对运用脉冲调制的驱动电路进行说明。   PWM是什么?   脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:   占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time)   Tsw(一周期)可以是开关 周期,也可以是Fsw=1/Tsw
[电源管理]
LED驱动<font color='red'>电路</font><font color='red'>脉冲</font>调制PWM<font color='red'>电路</font>设计
可获得复杂波形或脉冲真实有效电压的有效值-直流转换电路
可获得复杂波形或脉冲真实有效电压的有效值-直流转换电路 电路的功能 测量交流电流或电压时,如果波形是正弦波,可以使用平均值整流电路或央值检波电路将其换算为有效值进行测量,但对于脉冲波形,采用普通整流方法,误差很大,不实用,为此,必须有能获得波形真实有效值的运算电路。这种电路通常由绝对值电路和积分电路组成。本电路使用了单片IC,使电路得以简化。 电路工作原则 输出电路是电阻衰减器,为了能够输入高达700V的电压,电路以1/10为单位依次衰减。 因为RMS转换的IC的满量程输出为7V,所以当输入电压小于1V时,应加前置放大器。 VR1用作全电路的增益校验。为了避免失调电压的影响,加了
[模拟电子]
可获得复杂波形或<font color='red'>脉冲</font>真实有效电压的有效值-直流转换<font color='red'>电路</font>
延迟时间在5NS以内的高速响应微分脉冲发生电路
延迟时间在5NS以内的高速响应微分脉冲发生电路 电路的功能 使用逻辑IC微分电路,由于IC的传输滞后,微分输出的定时脉冲也跟着滞后,例如用定时脉冲发生器输出同步触发信号时,必须使用很窄的微分脉冲,如果延迟时间加长,用示波器观测波形时,触发延迟无法观测到触发前的波形。本电路是把微分输出的延迟时间控制在5NS以内的触发信号输出电路,用电感来实现微分。 电路工作原理 晶体管TT1、TT2是差动放大电路,为加快响应,工作在非饱和状态,假定输入幅度为0~+5V的脉冲,0V时,TT1的集电极电流大于TT2的集电极电流,当输入变成+5V时,TT2的电流立即增加,并在线圈L1处被微分,得到照片A那样的波形。
[模拟电子]
延迟时间在5NS以内的高速响应微分<font color='red'>脉冲</font>发生<font color='red'>电路</font>
LED驱动电路脉冲调制PWM电路设计
  本文主要从电子电路、热分析、光学 方面阐述了如何运用LED 特性进行设计。LED照明 作为新一代照明受到了广泛的关注。仅仅依靠LED封装 并不能制作出好的照明灯具。 这次主要针对运用脉冲调制的驱动电路进行说明。   PWM是什么?   脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:   占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time)   Tsw(一周期)可以是开关 周期,也可以是Fsw=1/Tsw
[电源管理]
LED驱动<font color='red'>电路</font><font color='red'>脉冲</font>调制PWM<font color='red'>电路</font>设计
高压脉冲发生器电路
高压脉冲发生器电路
[模拟电子]
高压<font color='red'>脉冲</font>发生器<font color='red'>电路</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved