复杂电路系统电源及PDS设计

最新更新时间:2011-09-26来源: 互联网关键字:系统电源  PDS设计 手机看文章 扫描二维码
随时随地手机看文章

现代大型集成电路,比如CPU、大型FPGA等消耗的电流往往达到数安到几十A,并且一些复杂系统电源种类繁多,因此电源系统的设计是否合理往往成为系统能否稳定工作的关键。电源系统的设计应该包含电源评估、电源供电电路设计和功率分布系统(Power distribution system 简称PDS)三个方面。本文分别探讨这三个方面的一般设计方法和思路。

一、电源评估
评估电源是电源系统设计的第一步,也是最重要的一步,决定了电源设计的成败。在设计电源的时候应该已经完成了整个系统的框图设计并基本选定了其中重要的IC芯片,这时我们需要参考数据手册Datasheet获得每一个IC的工作电压及消耗电流,并绘制下面这样一张表:
 表一、 IC电源评估表

1. 电源类型
电源类型可以分为模拟和数字两大类,模拟电源是指为PLL、ADC/DAC等模拟电路供电的电源;而数字电源主要是为数字电路供电,它又可以分为核心电源(主要为集成电路的核心逻辑电路供电,比如FPGA 核心电、压源)和I/O电源(主要为I/O接口供电),现代大型IC的供电一般核心电压和I/O电源是分开供电。
2. 电压值
电压值一般包含最小、典型和最大值,一般设计的电路电源应该工作在典型工作电压上,并且电源波动范围不应该超过最小和最大值的范围。
3. 电流
在设计电源时电流值应该考虑最Worst的情况,比如大型FPGA系统电流可能会随着使用逻辑门的多少而相差很多;在设计供电电路时在评估的最大电流基础上要提供一定的设计余量。


4. 功耗
统计每个电源的功耗是为了更合理的分布电源Tree,参考电源树一节。

在获取每个IC的电源参数后,我们需要绘制下面这样一张统计表,这一步是为了电源电路的设计和规划电源Tree做准备。

二、电源电路设计
 1. 模拟电源
  模拟电源往往为PLL、ADC/DAC、电流源等等模拟电路供电,它们的特点是电流较小,一般在几十mA到几百mA之间,并且对电源纹波敏感。因此模拟电源电路的设计往往选择LDO等,我们称为线性电源;并且对电源在IC引脚输入处要采取LC或铁氧体进行滤波以进一步减小电源纹波。其典型原理如图1所示:

 
 
图1

2. 数字电源
  数字电源一般为逻辑电路供电,它们要求往往电压较小,但是电流很大。比如现代X86 CPU的核心电源一般在1V左右,但是供电电流可以达到几十安。并且由于CPU内部的省电状态的切换,电流的变化也很大(最省电和全速状态工作电流可能相差几十倍)。


这类电源的设计一般选用数字调制的开关电源,这类电源一般由一个PWM控制器和外部输出MOS管、BOOT电路、反馈网络、LC滤波电路组成;另外也有些可以提供较大电流的LDO电源可以选用。对于超大电流供电时还需要考虑使用多项供电。下图是一个单相PWM供电电路的原理图:
 
图2
3. 电源Tree的绘制
在选择好电源的供电芯片后可以开始电源Tree的绘制,我们以典型的主板供电电路为例介绍。首先主板采用的外部供电电源来自一个350W电源,它分为12V、5V、5Vsus和3.3V输入,而主板上使用的电源有12V、5V(待机电压5Vsus)、3.3V(待机电压3.3Vsus)、CPU核心电压Vcore_cpu、CPU的PLL模拟电源、前端总线电源、内存1.8V电源(待机电压1.8Vsus)等等。其实一个主板上还有更多其他的电源,比如芯片组电源等等。我们需要合理的分配每路电源,保证每条电源路径末端的总功率不要超过前端电源的供电能力。最终我们应该绘制出一幅类似如图3所示的电源Tree(仅为示意图):

 
图3
当然,对于一个简单的系统设计起电源可能没有这么复杂。

4. 电源上电时序
对于较为复杂的系统,在绘制完电源Tree的基础上我们应该根据电源的上电顺序和系统复位等信号的要求绘制出具体而明确的上电时序图,如图4所示。并根据该上电时序图指导电源设计时电源IC的上电先后顺序。
 
图4

三、 PDS系统设计
PDS系统的设计最重要的部分就是退耦和旁路电容选择和分布,很多人认为旁路和退耦的作用是一样的,而实际上是不同的。


1. 退耦和旁路电容工作原理
1) 旁路的模型如图
 
当IC内部出现高频的电流波动,比如I/O或门的开关,这些高频的瞬态电流变化如果从电源吸取电流会引起电流的高频波动,而电流源的内阻和电源走线在高频时呈感性阻抗L,频率越高阻抗越大,从而引起IC电源引脚处较大的压降。因此在靠近IC电源引脚放置电容Cbp为IC提供瞬态电流,在瞬态电流变化时IC引脚会从低阻抗的电容C上吸取电流(理论上电流可以从电源线和电容两条途径流动,但是电容阻抗低,所以电流会主要沿着电容流动)。电容电压下降后会从电源线上补充电荷。本质上旁路电容的作用减少电源线上的瞬态(高频)电流波动。 旁路电容为高频充放电提供电荷,因此它的ESR和ESL(包含到电源引脚引线电感)应该尽量低,尽量靠近电源引脚,常用的旁路电容是小容量的(0.1uF、0.01uF等)陶瓷电容。

2) 退耦的模型如图
 
电路IC1上不可避免的会在电源线上产生一些噪声或者电流波动(主要是较低频段,因为高频的电流波动可以被它的旁路电容消除),如果一个电源同时为多个IC模块供电,其中一个IC上的噪声就会传递到另外一个IC电路。为了减少模块之间的噪声耦合放置电容Cdec,它和电源线上的电感组成一个LC低通滤波电路,当噪声(来自另外一个电路模块,或者来自电源本身,比如开关电源本身输出电压就含有大量噪声)沿着电源线传递到某一个IC时就会被这个LC低通滤波器消除。本质上退耦电容的作用是避免电源噪声从一个电路模块传递到另外一个模块。退耦电容要滤除电源线上的较低频的噪声,因此LC低通滤波的截止频率要低一些,同时Cdec电容还有为后续电路(包含很多旁路电容)提供电荷、稳定电压的作用,因此电容Cdec容量较大,常采用大容量(几十到几百uF)的坦电容。

2. 退耦和旁路电容的大小及位置
退耦和旁路的最终目的是要在IC的电源引脚处产生稳定的电压,它们都要求尽量靠近IC的电源引脚,在实际的系统中有时并不需要刻意区分退耦电容和旁路电容,而统称为退耦电容。
1) 小容量陶瓷电容(一般0.01uF~0.22uF)作为旁路电容,它的放置原则是尽量减小ESL,一般采用0402封装,应该放置在最靠近电源引脚的地方。现在大量的高密度集成电路采用的都是BGA的封装,它的所有引脚都在Chip下部,通过引脚ball和PCB版的Top层焊盘相连,电源总线或平面一般通过Via过孔延伸到芯片封装下部的电源引脚。所以最靠近电源引脚的位置就是芯片封装的下部PCB的背面,电容的PAD最好和过孔via直接相连。有些芯片也会直接在封装体substrate上焊有电容,这样就可以减少在PCB板上的旁路电容数量。
2) 大容量的退耦电容(一般>33uF),一般封装比较大,不可能特别靠近芯片的引脚,不过这类电容用于滤除较低频率的噪声,对放置的位置不是特别敏感,所以最合适的位置可能在芯片的边缘靠近芯片的位置。
3) 有时也会在退耦Cdec和旁路电容Cbp中间放置一些容量在几个uF(2.2uF等)的陶瓷电容作为中间级,一般认为它们是用来滤除一些中间频率的噪声,并为附近的旁路电容提供电荷,这些电容一般采用0805的封装,也应该尽量靠近电源的引脚处。
在选择具体的电容时还要考虑到其ESR的大小、噪声的频率高低等因素,并确定电容的数量,有时还需要通过适当的仿真simulation来帮助设计。

3. PDS分布设计实例
例子1
BGA封装芯片的电源引脚集中在芯片的中心附近,电源通过类似bus的方式连接到芯片的中心区,可能的电容布局如图,上下两边为0.1uF和0.01uF的小电容,中心为2.2uF的陶瓷电容,坦电容放置在芯片边缘,具体的布局和过孔的位置需要根据电源引脚的分布具体的调整,原则上应该是一大一(或几)小进行配对。
 
例子2
采用电源平面的方式,退耦电容放置在芯片边缘处靠近IC2的地方,IC1/IC3为其他使用该电源的芯片,IC2中心为小电容和中等容量陶瓷电容。

关键字:系统电源  PDS设计 编辑:冰封 引用地址:复杂电路系统电源及PDS设计

上一篇:艾默生网络能源3G基站供电解决方案
下一篇:适合有源天线系统的低噪声、稳定型电源

推荐阅读最新更新时间:2023-10-18 15:48

现代设计电源系统的创建
从线性电源到数字电源,我们有很大的设计选择范围。本文简要介绍设计者面对的一些替代方案,以及会出现的问题。 要点 电源子系统可以采用线性、开关、电荷泵、AC/DC、数字管理,或数字控制等方式。 线性电源有发热问题。 电荷泵会产生噪声注入。 开关电源必须处理好稳定性、噪声和发热问题。 数字管理和数字控制电源通常需要在产品推出前做好软件工作。 在现代产品中,功率电子可以是最简单的,也可以是最复杂的子系统。这并不令人惊讶,因为应用也有简有繁。最简单时,一个电源可以是一个大的齐纳二极管,如用在潜艇的有线增音器分离舱中。这些分离舱需要极端的可靠性,电阻器加二极管的方案是最简单,因而也是最可靠的方案。齐纳管要耗散出相当多的热量,但海流会很容易把
[电源管理]
现代<font color='red'>设计</font>中<font color='red'>电源</font>子<font color='red'>系统</font>的创建
富士通推出适合HEV电源系统及电力传输的MCU
北京时间2013年6月17日,富士通半导体有限公司宣布,推出适合汽车应用的新型32位 微控制器 -MB91F552,该芯片最适合用于混合动力汽车(HEV)的电池的电源系统及电力传输电路。已于2013年5月13日起提供新产品样片。 图1. MB91F552 除在单一微控制器芯片上集成了控制数字电源系统(如200MHz PWM模块)的优化功能,MB91F552还支持峰值电流模式控制,大大促进了电源的稳定性并降低系统成本。 近年来随着混合动力汽车及其它电动汽车的普及,已经需要将行驶过程中产生的电力存储在车载电池中。通过这种方式储存的电力,除了对车载辅助电池进行充电,还可以向汽车上的电机、音响系统、灯光和其它板上
[单片机]
富士通推出适合HEV<font color='red'>电源</font><font color='red'>系统</font>及电力传输的MCU
基于UPS电源在有线电视系统中的解决方案
一、UPS在有线电视系统中的应用 由于现有电力易产生诸如断电、电压波动、突波、杂波干扰、频率偏移及闪跳等现象,另外,意外的自然灾害或人为事故如地震、雷击、输变电系统断路或短路等,这些来自电源的故障,将会对有线电视系统造成诸多不良影响,甚至将直接导致有线电视系统服务中断。因此不间断电源系统越来越多地应用到CATV前端机房、千线供电系统等地方。 1.前端机房配置UPS 前端机房是有线电视系统的心胜,为了保证其工作稳定,一般选择三相输人单相输出型。额定功率一般为l OkVA的在线式UPS,它采用近年来推出的新翼器件IGBT模块等,其外接蓄电池组可以按需自主增减,为UPS的长延时奠定了硬件基础。这种UP
[电源管理]
息线电压IB选取及电源系统设计
  XY·CN总线是一种低成本的、一点对多点的现场总线通信系统,该系统的优势之一是其无与伦比的节电优势,要发挥该优势,就要注意各部分的电源设计方法。总线电压在12~36 V范围系统均能正常工作,对不同的应用可选用不同的工作电压,本文将全面论述其系统的电源设计原理及方法。   1 总线电压的选取   1.1 距离影响   标准XY001组成的从站接收电路的极限工作电压为10.5 V,总线使用RVl.5双绞线为介质,其千米阻抗为30Q左右,我们只有考虑系统在最大工作电流下末端电压大于10.5 V即可。如果供电时间比为3:5(有3/5的时间供申),则总线电压计算公式如下:   N为节点个数,L
[电源管理]
息线电压IB选取及<font color='red'>电源</font><font color='red'>系统</font>的<font color='red'>设计</font>
经典巡线机器人电源系统研究
   1引言   机器人巡线是指用机器人携带检测通信仪器沿 全线路行驶作业,并由机器人完成对线路运行故障的检测和对安全事故隐患的巡视,并将所检测的信息实时向地面传送,由地面进行分析处理。在常规地面运作时,一般采用小型蓄电池定时更换方式。但是,高压输电线路分布在野外,跨越山川湖泊,巡线机器人作业时,能量消耗大,而现场没有可供充电的电源,并且在巡线过程中频繁的更换蓄电池会造成诸多不便,该因素会极大的限制巡线机器人的广泛应用。   为此,本文研究了通过感应取电的方式为机器人提供电源的供电系统。    2 系统结构   为实现上述目的,设计铁芯和线圈从高压线路上获取电能,获取的电能通过开关电源转换为稳流源,并通过充电使能电路向镍氢
[电源管理]
经典巡线机器人<font color='red'>电源</font><font color='red'>系统</font>研究
UPS电源系统该如何防雷击
UPS是不间断电源的英文简称,是能够提供持续、稳定、不间断的电源供应的重要外部设备。 UPS按工作原理分成后备式、在线式与在线互动式三大类。 UPS顾名思义,它就是一台这样的机器,它在市电停止供应的时候,能保持一段供电时间,使人们有时间存盘,再从容地关闭机器。 1、雷电对于UPS电源的危害 现如今市面上的UPS主要可分为两大类:未安装防雷器件的UPS与内部安装有防雷器件的UPS. 未安装防雷器件的UPS,这类UPS包括早期生产和目前部份小功率的UPS,其防雷功能可以说"无",只能对市电网过电压或很小的杂散电流起着电源净化的保护作用。当雷击来临时,它本身首当其冲被击坏。内部安装有防雷器件的UPS,这里分二种类型
[电源管理]
便携式系统选择电源拓扑方案的分析及对比
本文将讨论各种 电源 拓扑,尤其是在将锂离子 电池 电压转换为3.3V电压 电压轨(大多数便携式设备的 电源 电压)时的利弊。本文还将说明降压/升压转换器的不同应用,并解释降压/升压转换器的解决方案需“量身定做”的原因。 从图1可以看出,将锂离子电池电压转换为3.3V电压轨的设计很有挑战。在充满电的情况下,典型的锂离子电池放电曲线的起始电压为4.2V。X轴起始点为“-5分钟”,对应的电压为电池充满电时的开路电压。在“0分钟”时,电池接入负载,由于内部阻抗以及保护 电路 的作用,电压开始下降。电池电压缓慢降至约3.4V,然后电压开始快速下降,原因是放电周期已接近终点。为充分利用电池储存的电量,3.3V电压轨需要在放电周期的大部
[电源管理]
电源系统的后调节和整理电路
    当涉及到系统安全性或高精度时,从低端产品到高端产品的制造商,从小型装配商到大型供应商,任何人都不能忽视后调节或整理这一问题。     后调节(Post Regulation),即众所周知的CV/CC(恒压/恒流)充电,已经成为任何适配器或电池充电器不可缺少的功能。后调节可延长电池的使用寿命。     在AC/DC变换应用中,TSM101、102、103和104系列器件是不同的运算放大器、比较器和参考电压之间的组合。它们的工作电压最高可达36V;带宽可达1MHz;当电流消耗为1mA时,参考电压的精度可达0.4%。该系列器件采用8或16引脚封装。     如图1所示,
[应用]
小广播
热门活动
换一批
更多
最新电源管理文章
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved