OOK 调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。
早期的发射机较多使用LC 振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。
图一
图二
接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA 左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。
下图为典型的超再生接收电路。
典型的超再生接收电路
超外差电路的灵敏度和选择性都可以做得很好,美国Micrel 公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。
OOK 调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。
早期的发射机较多使用LC 振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。
图一
图二
接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA 左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。
下图为典型的超再生接收电路。
典型的超再生接收电路
超外差电路的灵敏度和选择性都可以做得很好,美国Micrel 公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。
ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。
MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC 振荡的发射机配套使用,因为,LC 发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。
MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。
使用声表谐振器的无线发射电路形式很多,这里推出又一款电路,这个电路是我在3年前参考电子报上的文章后,又结合了该文章介绍的那个模块的实样做的,在经过批量生产后,改进了一些参数,现在这款产品真是非常不错。不过现在这个东东的仿制产品实在太多了,质量差别也很大,但是因为它比较简单,所以我觉得还是很有必要把它弄出来给大家,我在网上也找到许多类似的电路图,不过其中有的是有陷阱的哦,希望大家要注意学会自己辨别一些BUG。对于这个模块,我没有测试过它的无线发射的绝对功率,不过我们开着汽车在公路上拉过距离,它和普通的315M 超再生接收模块相配合,可以达到800米距离,虽然我的电路只要减小一下8050基极电阻的值,通讯距离会加大到1200米甚至更加远,但是经过大量的实验证明,那样不是很可靠的,原因我不是很清楚,可能有2方面的原因,一个是8050在R2小的时候,有轻微的导通,导致发射不能快速截止。还有一个是R2很小,8050开通电流比较大,对供电可能是一个扰动,而达不到起振要求。我曾经怀疑过自己的电路是不是很匹配,因此特意买了好多号称1500米的类似模块,发现它们也有一样的不可靠性,普遍表现为偶尔的不能起振或者波特率上不到2K,后来我就增加R2电阻,在大于15K 时,发射一直很正常,距离和27K 的差不多,所以现在就用这个电阻了,这里的L1L2,我是用0.8mm的免去漆漆包线在3毫米的钻头上绕4圈半脱胎而成。在制作的时候,或许在PCB 布线上还是有些问题的,提醒大家,线路要尽量简单,做到布线越短越好,元件要选好的,PCB 板可以用1点5毫米厚的。
超再生接收电路,一直以来,人们总是在说它和超外差比起来,有什么什么不好啊,频带宽呀,抗干扰能力差呀,辐射厉害呀,好象它什么都不好似的,那么我这里可以很明确告诉你,现在市面上绝大部分的防盗报警器所用的无线接收电路,都是用的是超再生电路,几乎全部的遥控玩具,用的也都是那玩意,所以嘛,它的市场还是挺大的,因为它的灵敏度是超外差的所比不上的,而且,调试要比超外差的简单点。许多朋友也许注意到了,我这里的东西用的高频小电感好象都是用的PCB ,为什么呢?关键是好做啊,虽然我做的时候,做了好多的实验性的工作,但是一旦确定后,它就比较稳定了。下面对电路做一个简单的介绍,前面环状是PCB 电感,后面的可调电容作为调谐使用,调谐的方法就是对着频谱仪,使本振信号调到你要的315MHZ ,如果没有频谱仪的话,就对着发射,慢慢地凑,直到可以接收为止,微弱的数据信号从PCB 电感的上面经过10K 电阻和10UF 电容输入到T2的基极,经过初步放大后,进入LM358 继续整形放大,放大后的数字信号直接输入到PT2272 的信号输入脚14 脚进行解码,解码输出脚为PT2272 的10-13 脚。
无线电遥控发射头T630是一种内藏开线未经信号的微型发射机,其发射频率为265MHz,12V 电源供电时,遥控距离为100M,工作电流仅为4mA,其体积为28X12X10mm。
无线电接收头T631,一个内藏天线,象电视机高频头一样的接收、解调器,其典型工作电压为6V,守候工作电流为1mA,接收频率为265MHz,其体积仅为31X23X10mm。利用它们可以很方便地制作出各种无线电遥控装置,具有微型化,传输距离远、耗电省、抗干扰能力强等优点。能够方便地取代红外线、超声波发射及接收头。
无线电射头T630电路原理如图所示。电路四发射管V1及外围元件C1、C2、L1、L2等构成频率为265MHz 超高频发射电路,通过环形天线L2向空中发射。天线L2采用镀银线或直径为1.5mm 的漆包线,天线尺寸为24mm(长)X9mm(高)。三极管V1选用高频发射管BE414或2SC3355。
无线电遥控接收头T631电路原理如图所示。接收电路主要由V1、IC 等组成,V1与C7、C9、L2等元件组成超高频接收电路,微调C9改变其接收频率,使之严格对准265MHz发射频率。当天线L2收到调制波时,经V1调谐放大出低频成分,再经V2前置放大后送入IC LM358,进一步放大整形后由LM358第7脚输出,该印刷电路板实际尺寸为31mmX23CC,天线尺寸为27mm(长)X9mm(高)。OUT 为信号输出端,三极管V1选用BE415或2SC3355。
电容C9可选用小型可调电容。IC 选用LM358。
在发射及接收电路中为减小体积,所有电阻均选用1/8W 或1/16W 的金属膜电阻;电解电容亦用超小型电容,其它电容全部采用高频陶瓷电容。在焊接时元件引脚尽量剪短,使其紧贴电路板,电路板材料应选用高频电路板。
以下是两载采用声表面的收发装置,相对于前面的介绍的电路,具有更远的传输距离、更强的抗干扰能力和更易制作、调试。
发射部分
接收部分
补充一点内容,关于电路中的电感:
上一篇:基于智能电表和采集终端的远程费控系统启动运行
下一篇:Albis主动式RFID-让门禁系统服务更加便捷
推荐阅读最新更新时间:2023-10-18 15:50
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 平头哥RVB2601开源应用方案征集来啊~100套板卡助阵,天猫精灵智能套装礼品组等你抱走~
- Microchip 有奖问答,信号增益或滤波的原始传感器应用方案
- TI 嵌入式处理器最新产品发布会 全程在线直播 4月16日精彩为您呈现!预报名、看直播、享好礼
- 为何矢量网络分析仪喊话:多端口测试,是时候放弃开关矩阵了
- 有奖直播:当智能遇上工业,技术如何落地?
- 马上下载Intel白皮书 赢取惊喜礼品
- 艾睿电子线上研讨会:英特尔FPGA深度学习加速技术 7月30日上午10:00-11:30 期待您的莅临!
- TE 《新趋势报告: 如何有效应对当下测试测量领域的挑战》下载最新趋势报告
- 泰克移动多媒体总线系列专题来袭~《HDMI2.0规范测试方案》下载有礼!