最通俗理解开关电源电磁干扰分析

最新更新时间:2011-10-07来源: chinaaet关键字:电磁干扰  正弦波  开关电源  传导干扰 手机看文章 扫描二维码
随时随地手机看文章

  先简单介绍一下下EMI:EMI翻译成中文就是电磁干扰。其实所有的电器设备,都会有电磁干扰。只不过严重程度各有不同。电磁干扰会影响各种电器设备的正常工作,会干扰通信数据的正常传递,虽然对人体的伤害尚无定论,但是普遍认为对人体不利。所以很多国家和地区对电器的电磁干扰程度有严格的规定。当然电源也不例外的,所以我们有理由好好了解EMI以及其抑制方法。

  下面结合一些专家的文献来描述EMI。

  首先EMI 有三个基本面

  噪音源:发射干扰的源头, 如同传染病的传染源;

  耦合途径:传播干扰的载体,如同传染病传播的载体,食物,水,空气等等;

  接收器:被干扰的对象,被传染的人。

  缺少一样,电磁干扰就不成立了。所以,降低电磁干扰的危害,也有三种办法:

  1、从源头抑制干扰。

  2、切断传播途径

  3、增强抵抗力,这个就是所谓的EMC(电磁兼容)

 

  解释以下名词:

  传导干扰:也就是噪音通过导线传递的方式。

  辐射干扰:也就是噪音通过空间辐射的方式传递。

  差模干扰:由于电路中的自身电势差,电流所产成的干扰,比如火线和零线,正极和负极。

  共模干扰:由于电路和大地之间的电势差,电流所产生的干扰。

  通常我们去实验室测试的项目:

  传导发射:测试你的电源通过传导发射出去的干扰是否合格。

  辐射发射:测试你的电源通过辐射发射出去的干扰是否合格。

  传导抗扰:在具有传导干扰的环境中,你的电源能否正常工作。

  辐射抗扰:在具有辐射干扰的环境中,你的电源能否正常工作。

  首先来看,噪音的源头:

  任何周期性的电压和电流都能通过傅立叶分解的方法,分解为各种频率的正弦波。

  所以在测试干扰的时候,需要测试各种频率下的噪音强度。

  那么在开关电源中,这些噪音的来源是什么呢?

 

 

  开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。那么那些变化的电流和电压,就是噪音的真正源头。那么有人可能会问,我的开关频率是100KHz的,但是为什么测试出来的噪音,从几百K到几百M都有呢?

  我们把同等有效值,同等频率的各种波形做快速傅立叶分析:

  蓝色: 正弦波

  绿色:  三角波

  红色: 方波

  可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。

  也就是说如果电流或者电压波形,是非正弦波的信号,都能分解出高次谐波。

  那么如果同样的方波,但是上升下降时间不同,会怎样呢。

  同样是100KHz的方波

 

  红色:上升下降时间都为100ns

  绿色:上升下降时间都为500ns

  可以看到红色的高次谐波明显大于绿色。

  我们继续分析下面两种波形,

  A:有严重高频震荡的方波, 比如MOS,二极管上的电压波形。

  B:用吸收电路,把方波的高频振荡吸收一下。

  分别做快速傅立叶分析:

  可以看到在振荡频率(大概30M)之后,A波形的谐波,要大于B波形。

 

  再来看,下面的波形,一个是具有导通尖峰的电流波形,一个没有导通尖峰。

   对两个波形做傅立叶分析:

   可以看到红色波形的高次谐波,要大于绿色波形,继续对两个波形,作分析

  红色: 固定频率的信号,绿色:具有稍微频率抖动的信号


  可以看到,频率抖动,可以降低低频段能量。进一步,放大低频段的频谱能量:

  可以看到,频率抖动就是把频谱能量分散了,而固定频率的频谱能量,集中在基波的谐波频率点,所以峰值比较高,容易超标。

 

  最后稍微总结一下,如果从源头来抑制EMI。

  1、对于开关频率的选择,比如传导测试150K-30M,那么在条件容许的情况下,可选择130K之类的开关频率,这样基波频率可以避开测试;

  2、采用频率抖动的技术。频率抖动可以分散能量,对低频段的EMI有好处;

  3、适当降低开关速度,降低开关速度,可以降低开关时刻的di/dt,dv/dt。对高频段的EMI有好处;

  4、采用软开关技术,比如PSFB,AHB之类的ZVS可以降低开关时刻的di/dt,dv/dt。对高频段的EMI有好处。而LLC等谐振技术,可以让一些波形变成正弦波,进一步降低EMI;

  5、对一些振荡尖峰做吸收,这些管子上的振荡,往往频率很高,会发射很大的EMI;

  6、采用反向恢复好的二极管,二极管的反向恢复电流,不但会带来高di/dt.还会和漏感等寄生电感共同造成高的dv/dt。

  但事实上,开关电源是EMI发射源无法根本解决。而且一些从源头抑制EMI的方法同时会降低效率,所以从传播途径来抑制EMI显得尤为重要。

  下面来看一下传播途径,这个是poon & Pong 两位教授总结的传播途径,比较的直观全面。

关键字:电磁干扰  正弦波  开关电源  传导干扰 编辑:探路者 引用地址:最通俗理解开关电源电磁干扰分析

上一篇:压电陶瓷变压器在开关电源的应用分析
下一篇:数字化控制在直流稳压电源中的应用设计

推荐阅读最新更新时间:2023-10-18 15:51

使用DPO示波器测量开关电源中的功耗
  电源需求的变化推动了开关电源系统的体系结构变化,能够测量和分析下一代开关式电源 (SMPS)的功耗至关重要。支持高得多的数据速度及千兆赫级处理器的新型电源,需要更大的电流和更低的电压,在效率、功率密度、可靠性和成本方面给电源设计人员带来了新的压力。为满足这些需求,设计人员正在采用新的结构,其中包括同步整流器、有源功率系数校正和更高的开关频率。这些技术也带来了新的挑战,如开关设备上的高功耗、温度上升和EMI/EMC过高等影响。   了解这些影响的一个关键参数是在开关过程中发生的功率损耗。在从“off”状态转换到“on”状态的过程中,电源会发生更高的功率损耗。而开关设备处于“on”或“off”状态时的功率损耗较低,因为流过设备的电
[测试测量]
使用DPO示波器测量<font color='red'>开关电源</font>中的功耗
一种应用于开关电源的低压高增益三级放大比较器
    比较器可以比较一个模拟信号和另一个模拟信号或者参考信号,并且输出比较得到的二进制信号。这里所说的模拟信号是指在任何给定时刻幅值都连续变化的信号,严格意义上讲,二进制信号在任何时刻只能取得两个给定值中的一个。     比较器被广泛使用于开关电源和数模转换器中,此外还应用于过零检测系统(zero-crossing detectors)、峰值检测系统(peak detecto-rs)、全波整形系统(full-waverectifiers)等。     1 比较器的设计     本文设计的比较器是一个高增益的三级比较器,第一级为普通差分放大器,第二级为折叠式共源共栅差分放大器,第三级为共源极放大器和一个推挽式反向放大器。另外还有一个
[电源管理]
一种应用于<font color='red'>开关电源</font>的低压高增益三级放大比较器
一种无APFC的全压开关电源设计方案
1.引言   相对于传统线性电源,开关电源拥有体积小、重量轻、效率高等方生俱来的优势。因此近些年,研究开关电源的人越来越多,相应的技术也层出不穷。研究成本低廉、性能可靠、兼容性强的开关电源成为众多电源设计工程师不断努力的目标。本文针对大功率开关电源提出一种无APFC的低成本全电压设计方案,该方案使用自动倍压方式有效减小火牛直流输入电压的范围,从而大大降低电源成本。    2.全压电源   统计全世界交流电压,可以将电压分为:   日本为代表的100V,美国为代表的120V,墨西哥为代表的127V,中国为代表的220V,欧洲多为230V,澳大利亚240V.因此,世界各国电压分布在100V-127V和220V-
[模拟电子]
一种无APFC的全压<font color='red'>开关电源</font>设计方案
单片开关电源的快速设计法
  在设计开关电源时,首先面临的问题是如何选择合适的单片开关电源芯片,既能满足要求,又不因选型不当而造成资源的浪费。然而,这并非易事。原因之一是单片开关电源现已形成四大系列、近70种型号,即使采用同一种封装的不同型号,其输出功率也各不相同;原因之二是选择芯片时,不仅要知道设计的输出功率PO,还必须预先确定开关电源的效率η和芯片的功率损耗PD,而后两个特征参数只有在设计安装好开关电源时才能测出来,在设计之前它们是未知的。   下面重点介绍利用TOPSwitch-II系列单片开关电源的功率损耗(PD)与电源效率(η)、输出功率(PO)关系曲线,快速选择芯片的方法,可圆满解决上述难题。在设计前,只要根据预期的输出功率和电源效率值,
[单片机]
单片<font color='red'>开关电源</font>的快速设计法
微功耗升压式开关电源MIC2141
一、 概述   MIC2141是一种适用于三或四节镍氢电池或一节锂电池供电的微功耗升压式DC/DC变换器,其特点是输出电压Vo受外电压Vc控制。此变换器工作频率是330kHz,占空比18%,采用门控振荡器结构。   该变换器能用于输出电压必须动态调整的应用,输出电压Vout与控制电压Vc的关系为Vout=6Vc,即Vc在0.8~3.6V时输出电压Vout为4.8~22V。外部仅需要三个元件就可以工作, 静态电流为70μA,既节省空间又满足便携式产品对功耗的要求,典型输出电流为1~10mA,工作温度范围为-40℃~85℃,转换效率超过85%。关断状态时,典型耗电小于2μA。 二、 MIC2141结构和功能
[电源管理]
微功耗升压式<font color='red'>开关电源</font>MIC2141
基于单片机控制的正弦波逆变电源设计
引言    逆变电源 是一种采用电力电子技术进行电能变换的装置。随着电力电子技术的发展,逆变电源的应用越来越广泛,但应用系统对逆变电源的输出电压波形特性也随之提出了越来越高的要求,因为电源的输出波形质量直接关系到整个系统的安全和可靠性指标。   随着数字信号处理技术的发展,以SPWM控制方式设计的逆变电源越来越受到青睐。本文介绍的SPWM逆变电源就是采用PIC单片机来实现SPWM控制和正弦波方式输出,而且电路简单,性能安全可靠,灵活性强,同时可以降低谐波,提高效率。   1 SPWM逆变器结构   逆变电源的拓扑结构有多种形式,图l所示是SPWM逆变电源的基本结构,它主要由变压器中心抽头推挽式升压电路、逆变
[电源管理]
基于单片机控制的<font color='red'>正弦波</font>逆变电源设计
毫米波雷达的自动驾驶功能在电磁干扰环境下的表现
为了提供更好的乘坐体验,未来汽车的自动驾驶等级会越来越高。 自动驾驶汽车会配置越来越多的传感器来保证汽车在复杂的交通场景和恶劣的天气条件下可靠运行。由于不容易受外界条件的影响,毫米波雷达传感器受到汽车厂家的青睐。目前的智能汽车已配置5个毫米波雷达,一般包括一个长距离和4个短距离雷达。 基于毫米波雷达的ADAS功能需要能够克服天气/光线条件和电磁环境的影响,也需要满足最高速度和最高精度的测试要求。在向SAE定义的L3级(或更高)自动驾驶或完全自动驾驶功能演进时,自动驾驶汽车将面临更大的挑战,更大的责任和更困难的验证手段。 罗德与施瓦茨公司作为电磁兼容、无线通讯和射频测试系统的引领者,针对自动驾驶车(Autonomous Dr
[汽车电子]
毫米波雷达的自动驾驶功能在<font color='red'>电磁干扰</font>环境下的表现
开关电源EMI滤波器原理与设计研究
摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved