便携式电子产品增长迅速,从手机和MP3播放器到PDA、个人DVD播放器以及较为传统的笔记本电脑,人们开始重新审视消费和专业产品设计的诸多方面。
这种变化在电池技术方面最为明显。用户希望电池能够满足日益复杂的应用需求,因此需要更大的电流、更长的工作时间。同时,对体积小、重量轻产品的需求也十分强劲,电池在任何设备的体积和重量中都占有相当大的比例,因此,制造商非常注意减少其体积和重量。还有一点,就是对快速充电的要求,即减少用户等待充电的时间,最大程度地发挥移动的优点。
这些要求促使电池制造商转向使用镍氢和锂离子等新化学材料,以获得更高的功率密度、更轻的重量和更快的充电速度。这些功能,尤其是快速充电,所付出的代价是增加了复杂性。新型电池需要精确控制的充电电路,不仅要确保其完全充满电,而且要尽量延长其使用寿命,并防止过热条件下可能出现的危险。
电池组件的任何部件发生故障都可能导致非常严重的后果,绝不仅仅是因无法供电而导致产品本身无法使用。最近,一家公司大举召回了一批笔记本电脑专用电池,估计造成的损失高达4亿美元。除了可能造成财务损失之外,电池还会导致人身伤害,甚至引发火灾。
为电池充电(尤其是高能锂离子电池)设计有效的控制策略,需要有良好的设计以及合适的元件规格和采购政策。可以采用以下几种架构:对于镍氢电池,充电控制回路可以监测(使用各种精确度级别)电池电压随时间变化的情况。还可以限定最长充电时间;或者让系统监测温度变化。在多数情况下,都需要某种温度监测方法来提供保护。
锂离子电池通常使用CCCV(恒流-恒压)方案,但这仍需要监测温度以便允许启动快速充电,同时还需要一种机制确保在温度超过安全临界值时停止充电。
因此,所有这些控制和保护策略都应包含温度监测机制,并将其作为整个功能体系的固有部分。通常置于充电器或电池内的IC可以提供监测和控制功能。但一定要在电池、充电器或者电池仓(低成本手机通常这样做)中安装一个或多个温度传感器。
对设计师来说,此类传感器的选择范围并不大。热电偶类器件需要相对复杂的补偿电路,这会导致一些校准问题。此外,它们会产生几mV的输出电压,需要进行信号调整,并且易受电磁噪声的 影响。
有时会用到镍或铂正温度系数 (PTC) 金属膜(或线绕)电阻器。它们的长期稳定性比热电偶类器件更好,并且不易受噪声干扰。但是,由于它们依赖流经自身的电流来监测温度,并且通常是低阻抗器件,所以耗电量相对较高,而且它们对温度变化的敏感程度不足以实现可靠的温度监测。市场上多数的线性PTC半导体器件都有这个缺点。
目前,在性价比合理的前提下,最有效的解决方案是使用NTC(负温度系数)热敏电阻。Vishay提供的NTC类器件是一种简洁的解决方案,耗电量极少,在很大的温度范围内具有非常出色的精确性,而且对温度变化的反应很迅速。从工程师的角度来看,这些多种规格的器件为电气和结构设计提供了非常高的灵活性。
NTC器件最基本的设计和规格参数是电阻值(通常是25℃时的值)和公差。但是,必须记住的是,热敏电阻的工作原理与温度密切相关。因此,工程师要确保其设计的产品能够在工作温度达到极限时正常使用。在高温(低阻抗)环境下,电阻值必须足够高,这样才能减少接触电阻和互连电阻之类的系统错误。相反,在低温(高阻抗)环境下,如果通过热敏电阻的电流不够大,敏感度则会下降。
公差通常用℃表示,可以作为器件测量温度精确性的一个衡量标准。在少数情况下,制造商会给出以电阻值表示的公差,即在给定温度下器件电阻与其预期电阻值的接近程度。对于详细规格制定者和购买方来说,记住下面一点非常重要,即特定设计的公差要求可以限制在特定温度下,也可以限制在稍微宽泛的温度范围内。在第二种情况下,公差本身会随器件绝对电阻值的变化而变化。设计人员需要使用为器件指定的负温度系数计算整个温度范围内的电阻公差,从而确保所选的元件满足系统的测量精度要求。
在工作温度范围内,器件的性能依赖于其本身的材料和结构,并由第三类基本规格,即器件的R-T曲线来描述。Vishay目前按照15种不同标准曲线生产器件。
在订购 NTC 类器件时,设计师经常仅指定电阻、公差和标准曲线。但是,在很多情况下其它参量才是确保系统按预期工作的关键。最重要的参量之一是b值,表示器件的电阻随温度变化的敏感度,同样重要的是该参量的标定公差。Vishay的器件具有非常出色的b值和公差,能够带来更高的精确度和更好的总体系统可靠性,而且在器件的整个工作温度范围内都具有良好的性能。
最后,经常被买方忽略的一点是,NTC 类器件需要紧密地安装在所要求的温度测试点上。这意味着元件必须能够经受得住现代制造工艺的物理性应力,尤其是在用于符合 RoHS 规范无铅工艺中温度曲线陡变的情况下。凭借在此领域内多年的经验,Vishay公司的NTC SMD的设计全面考虑了所有这些与应用相关的参数。
电池技术仍将不断发展。但即使是体积更小、寿命更长的新兴锂聚合物技术,也仍需要在控制回路和保护电路中监测温度。因此,成本低、精度高、体积小并且坚固耐用的NTC 类器件即使不被推崇,也仍是此类应用中至关重要的元件。
上一篇:如何设计一个合适的电源?
下一篇:自制CATV放大器用串联型开关电源
推荐阅读最新更新时间:2023-10-18 15:53
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况