充电器用正温度系数热敏电阻

最新更新时间:2011-10-24来源: 互联网关键字:充电器  温度系数  热敏电阻 手机看文章 扫描二维码
随时随地手机看文章
自我防护式充电电阻器以PTC(正温度系数)陶瓷为基础,用于平滑电源中的电容器。当发生短路时,它们会将电流限定在安全水平。

普通电阻在电容充电时常用来限制电流。不过,这常有技术风险。举例来说,当短接电容器时,如果电容器短路或者继电器失灵,电阻器将持续暴露在大功率电平下。这可能导致电阻器或者整个系统遭到破坏。爱普科斯采用基于PTC陶瓷的新式J20X系列充电电阻器,现已研发出一种专业解决方案:在自我防护的同时,还实现了相对紧凑的尺寸。如下表所示,J20X系列包括J201、J202和J204产品。



J20X系列的典型应用范围为500 W至50 kW功率范围内的工业电源、变频器以及UPS(不间断电源)系统。在这些应用中,链路电容器用于平整生成的直流电压或者在链路中用作储能装置。

当电容器充电时,通常需要串联一个电阻器来限制充电电流,以免产生超过允许范围的强电流峰值。一般是采用固定式普通电阻或负温度系数(NTC)电阻实现这一功能。在大多数情况下,会在充电之后使用一个由时间或电压控制的继电器来短接限流元件。充电电流的制约对整流器和转换器系统来说非常重要,因为产生的冲击电流峰值如果未得到限制,可能会触发熔丝或使整流器遭受超过允许范围的强电流。图1所示为传统整流器或转换器系统的方块图。



如果运行时没有干扰,那么上述普通电阻器和继电器的组合足以限制充电电流。不过,在充电期间或充电后发生的干扰可能会导致这些电阻器彻底失灵,并因此导致系统其它元件的全面故障。

为处理典型故障,比如电容器短路或短路开关失灵,建议使用J20X系列自我防护式充电电阻器。在无故障充电中,这些元件的作用就像固定式普通电阻器,可制约充电电流的峰值。当发生故障时,PTC陶瓷的温度和内阻将随加大的欧姆损耗一同增加(见图2),并将电流限定在安全级别。



相比之下,如果将固定电阻器用作充电电流限制器,上述故障将导致电阻器产生相当高的功率耗损,这会要求元件要有一定大的尺寸,这很不经济。以下特殊实例(见图3)可清楚说明这一功能原理。



上述电路采用三相桥式整流器,并将其接至相导线电压为400 VRMS的电源中。其中平滑电容器的电容为940 μF。并联电路含有两个B59204J0130B010型充电电阻器,用于限定冲击电流。亦称为零电位电阻器,其额定电阻在25℃的环境温度下为100 Ω。在这种情况下,需要并联两元件:因为电能必须在充电期间内传到电容器,这会使单个B59204J0130B010电阻器开始发热,直至温度高出允许范围,结果便导致电阻大大加强。这一情况应当避免,否则将无法对链路电容器进行彻底充电。


可以使用下面的公式计算出所需J20X系列元件的数量:



如果说元件B59204J0130B010大约有2 J/K的热容,参考温度为130℃,那么既可串联也可并联两元件。满足上述等式可确保PTC陶瓷在充电完毕之前不会超出参考温度,并且维持在低电阻范围内。

当达到电容器95%的极限充电电压时,并联的J20X元件将被短路,同时将接入负荷(以260 Ω固定电阻器为代表)。因此两个J204元件构成的并联电路的性能与一个50 Ω的固定电阻相当。有关无故障充电的情况,请参见图4所示电流时间图。



在这两种情况下,充电电流的时间曲线几乎相同。PTC陶瓷与固定电阻在电流特性方面的细微差别的产生原因是:
    * PTC热敏电阻的电阻温度特性形状特殊;另外,
    * PTC陶瓷在开启时的对电压的依赖性非常强。在计算峰值冲击电流时,一定要考虑电压依赖性。

约过190 ms之后,充电完毕,充电电阻器便会短路。能量吸收曲线以及加热程度同样相差无几(见图5)。二者的最高点均与电容器在短路时的能量相对应。


当发生故障时,PTC热敏电阻用作限流元件的优势就会十分明显。如果继电器接通失败,负荷电流将流经充电电阻器,并产生强大的热应力,这要求电阻器有相应的尺寸。若采用基于PTC陶瓷的充电电阻器,其电阻会由于强大的起始功率损耗而升至数10 k,从而能够在故障发生期间限定电流(参见图6)。在约三秒之后,先流经两电阻器然后流经总体电路的电流已跌至数10 mA。有关吸取能量的比较,请参见图7。



在进入高阻状态后,PTC陶瓷将能量吸收限定为非关键值,而固定欧姆电阻器的吸收能量则呈直线上升。在该实例中,考虑到温度降额,固定电阻器必须具有200 W以上的额定功率,才能防止过热以及随后的损坏。

故障——电容器在充电开始时发生短路
强大的冲击电流在约150 ms之后使两个自我防护式充电电阻器产生高电阻性,进而限制电流。而流经固定电阻器的电流则仅由极低的电源线电阻进行限定,因此固定电阻器中会产生非常高功率的能量转换。


在短时间内,并联的两个自我防护式充电电阻器与外界达到热平衡,同时由于PTC陶瓷的高电阻值,吸收的能量仅有略微上升。最终产生的能量吸收与图7所示类似。

上述故障——电容器在充电开始时发生短路——表示:充电电阻器上存在极高的负荷。因此,J201充电电阻器需要额外使用一个固定电阻器限定短路电流。不过充电电阻器J202和J204的应用则无需使用固定电阻器作任何额外保护。

关键字:充电器  温度系数  热敏电阻 编辑:冰封 引用地址:充电器用正温度系数热敏电阻

上一篇:变频器在高速公路上的应用
下一篇:Vishay发布业内首款采用表面贴装封装的CAT IV高压隔离光耦

推荐阅读最新更新时间:2023-10-18 15:57

恒流电池充电器
    电池用恒定的电流充电,充电电流大约是电池用安培-小时计算时容量的十分之一.也即一节4.5Ah容量的电池,充电电流大约是450mA。     这种恒流电池充电器有下列特点:     1.能对6v、9v、12v电池充电。其他额定电压的电池只要改变两只稳压二极管ZD1和ZD2的电压值,也能对它充电。2.恒流的大小可以根据电池容量用电位器和万用表与电池串联就能随意设定。3.一旦电池充足.在它达到一定电压后(例如12V电池达到13.5V~14.2v),电路能给出指示,并自动切断充电器,无需将电池从电路中移开。4.如电池放电放到电压低于一定值.电路会给出“深度放电”指示。5.电路静态电流小于5mA。其电流消耗大部来自齐纳管。6
[电源管理]
恒流电池<font color='red'>充电器</font>
基于3段式充电控制的电动汽车智能充电器设计
1.引言 电池是电动汽车的关键动力输出单位,在铅酸蓄电池,镍镉电池,镍氢电池,锂电池和燃料电池等几种常用电池中,因为具有能量比大、重量轻、温度特性好,污染低,记忆效果不明显等特点,镍氢电池在电动汽车中使用很普遍。 然而由于充电方法的不正确,造成充电电池的使用寿命远远低于规定的寿命。也就是说很多电池不是被用坏的而是被充坏的,可见充电器的好坏对电池寿命有很大的影响。 基于此,本文提出一种使用3段式充电控制方案的智能充电器的设计方案,能有效的提高充电效率,延长电池的使用寿命。 2.控制方法介绍 常用的充电终止控制方法包括:定时控制法,电压控制法,电流控制法和综合控制法。 定时控制法是指用定时系统来控制整个充电时间
[嵌入式]
手提式自动充电器
[电源管理]
手提式自动<font color='red'>充电器</font>
如何用PTC热敏电阻实现LED照明设备过热保护?
随着 LED 照明设备(发光二极管)的性能不断提高,价格日渐低廉,其市场也迅速扩大。LED照明设备已实现了低价化,然而,与传统的白炽灯,荧光灯相比,作为照明设备的实绩仍然欠佳,人们指出其安全性的课题。虽然 LED 具有高效照明,低耗电的特点,但是作为高亮度的LED元件本身却处于异常的高温状态。 本文将介绍使用村田制作所的陶瓷 PTC 热敏电阻“POSISTOR”来简单实现LED照明设备过热保护的方法,能够达到低成本,提高LED照明设备的安全性。 演示板说明 图1所示为村田制作所展示的发光二极管(LED)演示板的外观照片。 图1:村田制作所展出的发光二极管(LED)演示板 在该LED演示板上装载5个表面贴装型 LED ,
[电源管理]
如何用PTC<font color='red'>热敏电阻</font>实现LED照明设备过热保护?
一加33W充电器获得认证,暗示中端机将至
2020 年有很多惊喜,一加进军中端市场就是其中之一。而且该公司似乎没有放缓的迹象,因为最新浮出水面的一份 TUV 莱茵认证表明,又一款一加中端手机即将到来。   认证提到了一加的名字和一款 33W 的充电器,由于一加已经将旗舰系列的快充速度提升到了 65W,所以这里认证的这款充电器很可能是为了另一款中端手机,或许是传闻中的一加 9E。   除了充电器本身的额定输出功率为 11V/3A 之外,这个认证并没有透露太多信息。这或许是一加下一款中端手机的第一个信号,IT之家将保持关注。
[手机便携]
一加33W<font color='red'>充电器</font>获得认证,暗示中端机将至
简单热敏电阻测温电路
单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制,但那些温度检测与控制电路通常较复杂,成本也高,本文提供了一种低成本的利用单片机多余I/O口实现的温度检测电路,该电路非常简单,且易于实现,并且适用于几乎所有类型的单片机。其电路如图1所示: P1.0、P1.1和P1.2是单片机的3个I/O脚; RK为100k的精密电阻; RT为100K-精度为1%的热敏电阻; R1为100Ω的普通电阻; C1为0.1μ的瓷介电容。 其工作原理为: 先将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。 将P1.1、P1.2设置为输入状态,P1.0设为高电平输出,通过RK电阻对C1充电,单片机内部计时器
[测试测量]
无线充电器的设计(原理图+主材bom)
引言   无线电技术用于通信,已经在全世界流行了近一百年。从当初的无线电广播和无线电报,发展到现在的卫星和微波通信,以及普及到全球几乎每一个个人的移动通信、无线网络、GPS等。无线通信极大地改变了人们的生产和生活方式,没有无线通信,信息化社会的目标是不可议的。   然而,无线通信传送的都是微弱的信息,而不是功率较大的/能量。因此许多使用极为方便的便携式的移动产品,都要不定期地连接电网进行充电,也因此不得不留下各种插口和连接电缆。这就很难实现具有防水性能的密封工艺,而且这种个性化的线缆使得不同产品的充电器很难通用。如果彻底去掉这些尾巴,移动终端设备就可以获得真正的自由。也易于实现密封和防水。这个目标必须要求能量也像信息一样实现无
[手机便携]
无线<font color='red'>充电器</font>的设计(原理图+主材bom)
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V电池充电器参考设计
介绍 STDES-2KW5CH48V 参考设计主要为工业轻型电动汽车 (LEV) 提供充电解决方案,例如电动自行车、电动人力车、叉车、微型电动车。也适用于工业物流机器人。 充电器实施两种充电配置文件:一种用于锂离子电池,另一种用于铅酸电池,它们适用于电池充电的最新趋势。 充电器设计基于升压功率因数校正 (PFC) 电路,由提供高 PF 的 L4984D 控制大于 0.9,然后是基于全桥 LLC 谐振功率转换器的 DC-DC 电路,由 L6599A 控制。对于输出整流,已选择二极管与使用中心抽头的 LLC 变压器次级绕组配置。该设计采用 STM32F072CB 微控制器来控制功率级和电池充电曲线,并管理保护和用户界面。PFC
[嵌入式]
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V电池<font color='red'>充电器</font>参考设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved