摘要:在智能车传统PID、PD控制的基础上进行改进,提出了一种更为稳定快速的循迹控制方法。智能车的方向控制和速度控制都具有非线性、大滞后的特点,传统的控制方法存在着响应时间不够及稳态误差大的缺点。通过电磁传感器的合理设计,对路径信息和车体状态进行检测,并在此基础上引入基于模糊控制的变参数PD控制和变结构控制。实验结果表明,与传统方法相比,智能车运行的稳定性和快速性都得到了很大的提高。
关键词:智能车;MC9S12XS128;模糊控制;变参数PD控制器;变结构控制器
本文是以第五届“飞思卡尔”杯全国大学生智能汽车竞赛为背景。本届比赛新增加了电磁组的比赛,在50 cm宽的赛道中心铺设有直径0.1~0.3 mm的导线,其中通有20 kHz,100 mA的交变电流。除此之外,在赛道的起跑线处还有永磁铁标志起跑线的位置。车模要通过自动识别导线所产生的电磁场进行路径检测。
从道路元素来看,赛道一般可以分成直道、转弯、S道、回环道等形式。在智能车行驶的过程中,为了选择最佳路径,减少行驶距离,在转弯处最好选择内切,小S弯甚至可以近似的走成直线。但是由于电磁传感器的局限性,不可能像摄像头一样检测到前方赛道的全貌,这就要求在算法上有所突破。
1 智能车系统的硬件组成
1.1 整体硬件结构介绍
图1所示为智能车控制系统的硬件框图。系统采用飞思卡尔半导体公司的16位微处理器MC9S12XS128作为核心控制芯片,设计最小系统模块;外围电路包括路径检测模块,速度检测模块,舵机转向模块,电机驱动模块;电源模块为整个系统提供动力支持。其中速度检测模块采用光电编码器采集信号,并通过微控制器的ECT模块进行脉冲捕捉计数,测得速度值;电机驱动采用H桥,可实现电机的正反转及制动。
1.2 电磁传感器的设计
根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。本智能车选用工字型10 mH电感作为磁场感应传感器。这类电感体积小,Q值高,具有开放的磁芯,可以灵敏的感应周围交变的磁场,产生响应感应电动势。图2所示为路径检测模块电路图,这里只为其中的一路。
电路中L1为10 mH电感;C4为6.8 nF的谐振电容,实现20 kHz信号的选频电路;Vout为感应电动势输出端。传感器模块伸出车体约10 cm,距离地面8 cm。
由毕奥-萨伐尔定律知,通有稳恒电流的直导线周围会产生磁场,感应磁场分布是以导线为轴的一系列同心圆。圆上磁场强度大小相同,并随着距离导线的径增加成反比下降。
通电导线周围的磁场是一个矢量场。在本设计中,根据法拉第电磁感应定律,感应电动势可近似为:。k为比例系数,与线圈摆放方法、线圈面积和一些物理常量有关。感应电动势的方向可用楞次定律来确定。对于放置在导线上方h处,与导线水平距离为x的线圈中产生的感应电动势的大小与成正比。θ是传感器所在平面与导线的夹角。
图3所示为车模与赛道位置示意图,车体前部即为路径检测模块。α为车体相对于导线的偏移角度,d为车体相对于导线的偏离距离(垂直与车体中心线的横向距离)。在车模行驶的过程中,每个电感线圈距离导线的距离不同,夹角也不同,因此输出的感应电动势大小不同。
图4所示为本设计中电磁传感器的布局。每两个轴线相互垂直的电感作为一组传感器,水平放置。
设每组传感器中,前端电感输出的感应电动势为Ey,后端电感输出的感应电动势为Ex,则:
1)对于1号位的两个电感,计算,可求得电感所处磁场的导线方向,即车体相对于导线的偏移角度α;
2)2,3号位的电感同车体中心线成45°夹角,用来确定α值的正负,即导线所处的象限。当2号位检测到的磁场强度明显大于3号位时,以2号位前后两个电感的电动势之比作为方向的参考:当时,α为负(导线处于第二,四象限),时,α为正(导线处于第一,三象限);3号位的判别方法与之相反。
3)计算1号位前后两个电感感应电动势平方和之根,再乘以比例系数λ,得到,即为车体偏离导线的距离。
4)4,5号位的电感用来辅助判断d值的正负(左为负,右为正),方法同导线方向的判别类似。
由于实际赛道中磁导线的电流在50~100 mA之间,因此每次上电智能车都要有一个15 s的自学习的过程:将车体贴近赛道做左右摆动(不超出赛道范围),检测出不同的车体姿态下电感感应电动势的极值,并由此确定值。实验测得传感器模块距离的检测精度为1.5 cm,角度的检测误差在±5°范围内,前瞻距离可达到25 cm。实验的结果表明,这样的传感器布局对于导线的检测是比较准确的,而且它可以预测出导线的方向趋势,便于前瞻性控制算法的设计。
2 整体控制系统的设计
智能车的控制结构是以微处理器为核心。电机控制量、电机转速和速度检测构成一个闭环,该闭环的输入为路径检测后微处理器给定的速度值,输出控制后轮驱动;舵机控制量构成一个控制系统通道,其输入为徽处理器给定的转角值,输出控制前轮转向:最后以运动轨迹作为路径检测反馈控制器的输入,其与导线比较确定车体姿态从而构成一个大的闭环控制系统。智能车的控制系统框图如图5所示。
3 转向控制算法的设计
对舵机的控制,要保证在任何情况下,总能给舵机一个合适的偏移量,保证小车能始终连贯地沿导引线行驶,防止出现大的抖动。
舵机转向是一个双输入单输出的控制器:输入量为偏移角度α及偏离距离d,输出量为舵机的给定值。通过实验得出,系统可以依靠单个输入量来完成控制的舵机,譬如以偏移角度α作为输入,不考虑偏离距离d的作用。这种情况下系统虽然能够运行,但是控制的精度及响应速度较低。同样,在仅依靠偏离距离d的时候,系统的稳定性较差,会出现比较明显的抖动。因此,需要综合分析这两个输入量之间的耦合关系,实现更为精确的控制。
3.1 基于模糊控制的变参数PD控制器
基于模糊控制的PID参数整定就是将模糊理论应用到PID 3个参数的整定中,将模糊理论与PID控制结合起来,构成一个模糊PID控制器。本设计去掉了PID中的积分环节,采用基于模糊控制的变参数PD控制器。因积分环节主要是用于消除静态误差,相对于干扰较大舵机控制来说,它的作用并不明显,反而会降低响应速度。变参数PD控制器的结构如图6所示。图中:rin为系统的输入;yout为系统的输出;error为系统输入与输出的差;ec为误差的变化率。
为了实现变参数PD控制,算法引入了两个新的变量:偏移角度的变化率△α和偏移距离的变化率△d。
3.2 模糊控制规则及参数的整定
在模糊控制中取误差α(或d)和误差变化率△α(或△d)为输入语言变量,以构成一个二维模糊控制器,每个语言变量取负大(NB)、负中(NM)、负小(NS)、零(Z)、正小(PS)、正中(PM)、正大(PB)七个语言值。根据各模糊子集的隶属度赋值表和各参数模糊控制模型,建立转向模糊规则表。
参数的调整就是寻求Kp、KD与△α、△d之间的关系。智能车在运行中不断检测α、d和△α、△d,然后查询模糊规则表选择合适的Kp、KD参数进行控制。实际控制中,当△α,△d增大时,表明车体有偏离导线的趋向,这时候增加Kp、KD,阻止车体的继续偏离;当△α,△d减小时,表明车体正逐渐趋近于导线,这时候就要减小Kp、KD。
设计中,系统首先采用基于模糊控制的变参数PD控制器分别实现单个输入量下的控制量输出,然后实验得出的线性耦合关系将两个输出量耦合为一个量控制舵机。
图7所示为转向控制算法框图。UA为纯偏移角度控制时舵机的给定量,UL为纯偏离距离控制时舵机的给定量,SG为最终的舵机给定量。通过实验得到的耦合关系为:SG=0.6UA+0.4UL。这时的舵机响应速度快,直道的跟踪效果很好,通过弯道时可以看到比较明显的内切。
4 速度控制算法的设计
智能车要完成起动、加速、减速、制动等动作。直线行走、拐弯和停车时要求不同的车速,因此速度必须采用闭环控制。智能车的速度与转向是两个独立的被控量,但它们都是根据偏移角度α及偏离距离d来确定输出给定量的。
根据智能车速度控制的特点,设计采用了变结构控制方法。变结构系统是指在控制过程(活瞬态过程)中,系统结构(或叫模型)可发生变化的系统。变结构控制对加给系统的摄动和干扰有良好的白适应性。对于车速的控制,当偏差较小时,采用PID控制,提高稳态精度;当偏差较大时,采用PD控制,以便加快响应速度;当偏差大于可调节范围时,采用Bang-Bang控制。图8所示为速度控制算法框图。
不同的偏移角α及偏离距离d通过查询速度模糊规则表得到给定速度等级V。系统实时检测电机的实际速度值,同当前的设定值做比较,根据误差范围的不同分别采用PID控制、PD控制和Bang-Bang控制。当速度误差在±5%时采用PID控制;当速度误差在±5%~±10%时采用PD控制;当速度误差大于±10%时采用Bang-Bang控制。
5 结论
基于电磁传感器的智能车的设计,可以检测出车模相对于导线的偏移角度α及偏离距离d,并以此作为控制的输入量。通过变参数的PD控制和变结构控制分别实现舵机和电机的精确控制。整体调试后车模速度由传统控制方法下的1.8 m/s提高到目前的2.3 m/s,转弯处可以看到比较明显的内切。实验结果表明,这种控制方法相对于单一的PID控制具有响应时间快,稳态性能好,抗干扰能力强的特点。
上一篇:基于10kV线路保护整定计算问题及解决办法
下一篇:电源系统的B类保护和C类保护
推荐阅读最新更新时间:2023-10-18 15:59
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况