为DC/DC转换器选择正确的电感器与电容器

最新更新时间:2011-11-04来源: 互联网关键字:DC/DC转换器  电感器  电容器 手机看文章 扫描二维码
随时随地手机看文章

为DC/DC转换器选择正确的电感器与电容器

随着便携式电子产品的体积在不断缩小,其复杂性同时也在相应的提高。这使得设计工
程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。本文以
德州仪器
TPS6220x 系列降压稳压器为例,向设计工程师介绍在权衡解决方案的占用空间、性能以及
成本时,如何为DC/DC 转换器选择正确的电感器与电容器。
随着手机、PDA 以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,
这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。
使用DC/DC 转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供
电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高
效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常
见问题。
大信号与小信号响应
开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU 内核电源
要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式
时,内核吸收的电流会从几十微安很快地上升到数百毫安。
随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。
负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定
义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。
实际上,误差放大器处于压摆范围(slewlimit)内,由于负载瞬态发生速度超过误差放大
器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满
足瞬态电流要求。
大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提
供良好的响应。环路带宽越高,负载瞬态响应速度就越快。
从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在
线路或负载瞬态期间仍然可能出现不稳定状态和振铃现象。在选择外部元件时,电源设计工
程师应意识到这些局限性,否则其设计就有可能遇到麻烦。
电感器选型
以图1 所示的基本降压稳压器为例,说明电感器的选型。
对大多数TPS6220x 应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取
决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1 所示,较
高的VIN 或VOUT 也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感
损失)情况下处理峰值开关电流。

以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转
换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。
可将线圈总损耗结合到损耗电阻(Rs)中,该电阻与理想电感(Ls)串联,组成了一个如图
1 所示的简化等效电路。
尽管Rs 损耗与频率有关,但在产品说明书中仍对直流电阻(RDC)进行了定义。该电阻
取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获
得。RDC 的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。

图1:TPS6220x 基本降压稳压器 来源:http://tede.cn
线圈的总耗损包括RDC 中的耗损和下列与频率相关联的耗损分量:磁芯材料损耗(磁滞
损耗、涡流损耗);趋肤效应造成的导体中的其他耗损(高频电流位移);相邻绕组的磁场损耗
(邻近效应);
辐射损耗
可将上述所有耗损分量组合在一起构成串联耗损电阻(Rs)。耗损电阻主要用于定义电感
器的品质。然而,我们无法用数学方法确定Rs。因此,我们一般采用阻抗分析仪在整个频
率范围内对电感器进行测量。这种测量可以确定XL(f)、Rs(f)和Z(f)个别分量。
我们将电感线圈电抗(XL)与总电阻(Rs)之比称为品质因素Q,参见公式(2)。品质因素被
定义为电感器的品质参数。损耗越高,电感器作为储能元件的品质就越低。

品质—频率图可以帮助选择针对特定应用的最佳电感器结构。如测量结果图2 所示,可
以将损耗最低(Q 值最高)的工作范围定义为一直延伸到品质拐点。如果在更高的频率使用电
感器,损耗会剧增(Q 降低)。
良好设计的电感器效率降低微乎其微。不同的磁芯材料和形状可以相应改变电感器的大
小/电流和价格/电流关系。采用铁氧体材料的屏蔽电感器尺寸较小,而且不辐射太多能量。
选择何种电感器往往取决于价格与尺寸要求以及相应的辐射场/EMI 要求。
输出电容器
消除输出电容器可以在成本和占板空间两方面实现节省。输出电容器的基本选择取决于
纹波电流、纹波电压以及环路稳定性等各种因素。
输出电容器的有效串联电阻(ESR)和电感器值会直接影响输出纹波电压。利用电感器纹
波电流((IL)和输出电容器的ESR 可以简单地估测输出纹波电压。
因此,设计时应当选用ESR 尽可能低的电容器。例如,采用X5R/X7R 技术的4.7uF 到
10uF 电容器表现为10m(范围的ESR 值。轻负载(或者不考虑纹波的应用)也可以使用容值更
小的电容器。

图2:品质-频率图:(a)Q 和频率的关系;(b)RS 和频率的关系。
TI 的控制环路架构使您能够采用自己首选的输出电容器,同时还可以补偿控制环路,
以实现最佳的瞬态响应和环路稳定性。当然,内部补偿能够理想地支持一系列工作条件,而
且能够敏感地响应输出电容器参数变化。
TPS6220x 系列降压转换器具有内部环路补偿功能。因此,必须选择支持内部补偿功能
的外部LC 滤波器。对于此类器件而言,内部补偿最适合16kHz 的LC 转角频率
(cornerfrequency),即10uH 电感器与10uF 输出电容器。根据一般经验法则,在选用不同输
出滤波器时,L*C 乘积不应当大范围变动。在选择更小的电感器或电容器值时,会造成转角
频率增加至更高频率,因此这一点尤为重要。
在从负载瞬态出现到打开P-MOSFET 期间,输出电容器必须提供负载所需的全部电流。输
出电容器提供的电流会造成经过ESR 的电压降低(从输出电压中扣除)。ESR 越低,输出电
容器提供负载电流时的电压损耗就越低。为了降低解决方案尺寸并且提升
TPS62200 转换器
的负载瞬态性能,建议采用4.7uH 电感器和22uF 输出电容器。

关键字:DC/DC转换器  电感器  电容器 编辑:冰封 引用地址:为DC/DC转换器选择正确的电感器与电容器

上一篇:低功率反激式转换器不再需要光耦合器
下一篇:单端反激变换器的电路图和波形

推荐阅读最新更新时间:2023-10-18 16:00

电容器的漏泄测量系统
  电容器是几乎所有电气设备上都会用到的主要器件。漏阻是电容器被测试的众多电气特征中的一个。漏阻通常被称为 IR (Insulation Resistance,绝缘电阻),以 兆欧-微法 表示。在其它情况下,漏泄可能被表示为特定电压(通常为工作电压)下的漏泄电流。   电容器的漏泄是通过向电容施加一个固定电压,并测量产生的电流测得的。漏流将随时间呈指数衰减,因此在测量电流之前,施加电压必须达到一个已知的时间周期(保压时间)。   出于统计目的,必须测试一定数量的电容器来生成有用的数据。为了进行测试,就需要一套自动切换系统。   图 1所示为一套电容器漏泄测试系统,它采用了Keithley 6517A型静电计/源、71
[测试测量]
<font color='red'>电容器</font>的漏泄测量系统
新型高可靠性铝电解电容器
新型高可靠性铝电解电容器 日前,Vishay Intertechnology, Inc.宣布,推出高容值、高纹波电流,并可在+105℃高温下工作的径向铝电容器 --- 142 RHS系列。 142 RHS系列提供从5mm x 11mm至18mm x 40mm的15种外形尺寸,105℃的最高温度等级使器件能在更高的温度下工作,或是具有比标准的85℃系列更长的器件寿命。其他特性包括在105℃下高达3100A的额定纹波电流,在10V~450V电压范围内的容值为1μF~22,000μF。 做为一款采用非固态电解液和径向引线的极化铝电解电容器,该器件的性能规格使其能很好地适用于工业和通信系统、家用电器、便携式和移动电子设备
[模拟电子]
Vishay新款耐高温IHLP®电感器可在民用和工业领域的极端环境中应用
近日,Vishay Intertechnology, Inc.宣布,推出新的IHLP® 超薄、大电流电感器---IHLP-1616BZ-51。电感器的外形尺寸为1616,可在+155℃高温下工作,高度2mm,可用于极端环境中的民用和工业应用。下面就随网络通信小编一起来了解一下相关内容吧。 Vishay Dale IHLP-1616BZ-51的频率范围高达2MHz,适用于DC/DC转换器中的储能和达到电感器自谐振频率(SRF,见下表)的大电流滤波。应用领域包括笔记本电脑、桌面PC和服务器;薄外形、大电流的电源,PMIC和负载点(POL)转换器;工业和通信电源系统;分布式电源系统和FPGA的DC/DC转换器。 今天发布的这颗器件效
[网络通信]
TI通过集成有源滤波器降低DC/DC转换器的EMI
工程师在设计电源系统时面临的一个常见问题是如何选择DC/DC转换器:线性还是开关转换器?一般而言,开关电源(SMPS)相比线性稳压器,效率要高得多,也更加优越。但是,EMI性能却相差很多。 线性与开关对比图,来自Advanced Conversion Technology TI正致力于创建可提供两全其美的解决方案——高效和最小的EMI。 开关电源是工程折衷的典型例子,在这种情况下,高效运行会带来额外的EMI问题。 开关电源通过打开和关闭半导体开关来工作,利用电感器的瞬态行为进行升压或降压。虽然开关过程产生了高效率,但这也是直接导致EMI问题。 开关电源降压转换器的示例。图片由Components101提供
[电源管理]
TI通过集成有源滤波器降低<font color='red'>DC</font>/<font color='red'>DC转换器</font>的EMI
电感器变压器的检测方法分享
  1 色码电感器的的检测   将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:   A 被测色码电感器电阻值为零,其内部有短路性故障。B?被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。   2 中周变压器的检测   A 将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。B?检测绝缘性能   将万用表置于R×10k挡,做如下几种状态测试:   (1)初级绕组与次级绕组之间的电阻值;   (2)初级绕组与外壳
[测试测量]
电力电容器保护器的应用技巧
电力 电容器 保护器是可与切换电容器接触器,无功补偿控制器,熔断器等组成电力电容器控制系统,主要作为电力电容器及补偿补偿电路中出现的过流、短路,涌流,谐波,过压等故障进行保护,电力电容器保护器作为过流保护的新型产品填补了国内电力电容器保护器的空白,可广泛应用于功率因数自动补偿控制电路。   电力电容器保护器的应用注意事项 1、保护器工作电源应与标称电压相符。 2、保护器接线端子接线应正确无误,接触良好。 3、应定期进行检查,确保可靠运行。 4、保护器动作指示后,必须仔细观察故障所示类型,仔细检查故障原因,在正确处理故障后方可再次运行。 5、电容器投入运行时,运行指示灯处于闪烁状态,若在很短时间内出现过流跳闸,应用钳形电流表测量一
[电源管理]
电力<font color='red'>电容器</font>保护器的应用技巧
Maxwell超级电容器助地铁节能供电双赢
  美国费城地区的铁路制动能量回收项目中,锂电池和Maxwell的超级电容器组成的混合储能系统不仅回收制动时的能量用于列车加速,而且还可将多余的储存能量供给所在区域的电力运营商,用于调节电网频率。这不仅提高了供电质量,对铁路运营商而言,还是额外的收入。 在添加了以静电而非化学方式储存电量的超级电容器之后,列车将能够在制动过程中采集更多能量   列车在运行中会产生巨大的动能,但在停靠站台的制动减速过程中,该能量通常是通过制动电阻消耗浪费掉。一种节约能源的设计是将该部分制动能量反送至电网,供给其他负荷使用。但该方案的缺陷是反送的能量若过大,则有可能造成电网局部电压过高。目前来说最有效的解决方案是使用储能设备回收制
[新能源]
Vishay的101/102 PHR-ST电容器新增三种尺寸
    Vishay Intertechnology, Inc.宣布,其101/102 PHR-ST螺旋式接线柱功率铝电容器新增了90mm x 146mm、76mm x 220mm及90mm x 220mm三种更大的外形尺寸,接线柱的长度为13mm。     101/102 PHR-ST 器件现在共有从35mmx 60mm至90mm x 220mm的11种外形尺寸,圆柱形的铝外壳与圆盘里的蓝色套筒和减压装置保持绝缘。新的外形尺寸使器件实现了从1F、25V至10,000F、450V的更多容值/电压组合。        101/102 PHR-ST 电容器在+85℃下的额定纹波电流为49.1A,在+85℃下的使用寿命长达
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved