EMI电源滤波器的插入损耗分析

最新更新时间:2011-11-05来源: 互联网关键字:EMI滤波器  插入损耗  共模  差模 手机看文章 扫描二维码
随时随地手机看文章

摘要:在一般EMI滤波器的共模和差模等效电路的基础上,分析了源阻抗和负载阻抗对滤波器插入损耗的影响。提出了共模插入损耗和差模插入损耗的计算方法,推导了滤波器插入损耗与阻抗关系的表达式,并且对这一关系作了仿真分析,仿真结果验证了理论计算和分析的正确性。
关键词:EMI滤波器;插入损耗;共模;差模

    随着电子设备的不断增多,电磁干扰(EMI)现象越来越严重。在传导干扰中,以电源线传导干扰最为严重。抑制电源线上干扰的主要途径是使用EMI滤波器,通常用插入损耗表征滤波器的特性。然而,在实际使用时,即使EMI滤波器的插入损耗设计达标,也有可能因为源阻抗和负载阻抗的变化而得不到最佳的滤波效果。
    本文针对EMI滤波器的共模和差模插入损耗进行计算分析,并研究滤波器源阻抗与负载阻抗的变化对滤波器性能的影响,通过仿真验证了方法的有效性。

1 EMl滤波器的插入损耗
    EMI滤波器对干扰噪声的抑制能力用插入损耗IL(Insertion Loss)来衡量。插入损耗定义为:没有滤波器接入时,从噪声源传输到负载的功率P1和接入滤波器后,从噪声源传输到负载的功率P2之比,用dB表示,滤波器接入前、后的电路如图1所示。


    滤波器插入损耗的表达式为
   
    式(1)中,RS和RL分别表示源阻抗和负载阻抗;a11、a12、a21、a22表示滤波器网络的A参数。
    根据式(1)可推导出共模插入损耗的表达式为
   
    同理根据式(1)可推导出差模插入损耗的表达式为

2 源阻抗、负载阻抗对插入损耗的影响
    EMI电源滤波器在不同的源与负载阻抗的情况下,滤波性能有很大的差异。在一般的滤波器产品说明书中,提供的插入损耗值都是在源阻抗和负载阻抗均为50 Ω的情况下得到的。在实际使用中,滤波器的端阻抗随着工作环境的变化而变化,因而对滤波器插入损耗的影响也很大。   
    引用美国测量的源阻抗和负载阻抗的变化范围,在10 kHz~10 MHz(军标CE102规定的抑制频率范围),源阻抗变化范围为0.1~178 Ω,负载阻抗变化范围为0.007~10 kΩ。
    (1)共模插入损耗的分析。
    对式(2)进行变换得
  
    显然,当f(RS,RL)取最小值时,ILCM达到最小值。式(6)中,当RL不变时,RS取最大值时,f(RS,RL)取最小值。
    如图2(a)所示,当负载阻抗RL不变时,源阻抗RS越大,共模插入损耗越小。当负载阻抗变大时,共模插入损耗随之变大。如图2(b)所示,当源阻抗RS不变时,负载阻抗RL越大,共模插入损耗越大。当源阻抗变大时,共模插入损耗逐渐减小。

以上结论可以总结为阻抗最大失配原则,即低源阻抗与高负载阻抗的条件下,失配程度越大,滤波器效果越好。若负载阻抗大于源阻抗,则式(4)可化简为
   
源阻抗在近似计算的过程中可以被忽略,而负载阻抗对共模插入损耗的影响程度是不同的。图3所示为源、负载阻抗分别为0.1/100 Ω、50/1M Ω时插入损耗的比较情况。可以看出,高频段中负载变化对插损影响并不大,50/1M Ω虽然属于阻抗严重失配的情况,但是源阻抗不趋近于零,而只是小于负载阻抗而已。由式(7)分析可知,在源阻抗小于负载阻抗的条件下,忽略源阻抗的影响,负载阻抗对插损的影响成反比,即负载阻抗越大,共模插人损耗越小;反之,则越大。
   

     如图4所示,RLo的取值随着频率的增加而减小,当RLRLo时,共模插损逐渐增大。

 

 


(2)差模插入损耗的分析。
    由式(3)可知,令

    由式(8)中可以看出,当RS和RL同时增大时,g(RS,RL)也随之增大。如图5所示,同时增大源、负载阻抗,差模插入损耗逐渐增大。


    若阻抗失配的条件下,即源阻抗小于负载阻抗,式(8)可化简为
   
    负载阻抗在近似计算中可以被忽略,而源阻抗对差模插入损耗的影响是不同的。图6所示为源、负载阻抗分别为0.1/100Ω、50/1MΩ、100/1MΩ时,差模插入损耗的比较隋况。由式(7)分析可知,在源阻抗小于负载阻抗的条件下,忽略负载阻抗的影响,源阻抗对插损的影响成正比,即源阻抗越大,插损越大;反之,则越小。



3 结束语
    通过对EMI滤波器共模和差模等效电路进行分析,推导出共模、差模插入损耗的计算表达式,并且分别对不同源、负载阻抗对共模、差模插入损耗的影响做了分析,得出如下结论:
    (1)对共模插损来说,在低源阻抗/高负载阻抗的条件下,失配程度越大,共模插损越高,滤波器性能越好。当源阻抗小于负载阻抗时,忽略源阻抗的影响,负载阻抗对插损的作用成反比,即负载阻抗越大,共模插入损耗越小;反之,则越大。
    (2)对差模插耗来说,在高源阻抗/高负载阻抗的条件下,差模插入损耗越高。当源阻抗小于负载阻抗时,源阻抗对差模插入损耗的作用成正比,即源阻抗越大,插损越大;反之,则越小。
    (3)RLo的取值随着频率的增加而减小,当RLRLo时,共模插损逐渐增大。

关键字:EMI滤波器  插入损耗  共模  差模 编辑:冰封 引用地址:EMI电源滤波器的插入损耗分析

上一篇:单电源I/F转换电路设计
下一篇:高功率密度工业电源的实现

推荐阅读最新更新时间:2023-10-18 16:00

一种神经信号调理电路的设计
   人体的神经信号直接表征着人体自我的意思,研究神经信号为了解、识别人体提供了一条途径。多年来。目前,研究内容主要包括神经电极和神经信号调理电路两部分。神经电极可以将神经电信号从人体中提取出来,而神经信号调理电路则对神经信号进行去噪、放大、识别等处理。 神经信号和人体的其它生物信号有相同的一些特点,也有其独具的一些特征。根据神经生物学的研究,神经信号一种形似脉冲的电信号,频率一般为1kHz左右,高的可达10kHz。例如一束控制肌肉的运动神经,当有冲动电位信号到来时,肌肉纤维便发生收缩反应,收缩的力度根据神经冲动频率的不同而有强弱的区别。因此,只要将脉冲电位进
[模拟电子]
新型低电容EMI滤波器为手机带来更强抗干扰性能
  随着手机中LCD及相机的视频分辨率提高,数据工作的频率将超过40MHz,对抑制无线EMI与ESD而言,传统的滤波器方案已达到它们的技术极限。为适应数据速率的增加且不中断视频信号,设计者可以选择本文讨论的新型低电容、高滤波性能EMI滤波器。      随着无线市场的继续发展,下一代手机将拥有更多的功能特性,例如带多个彩屏(每部手机至少有两个彩屏)以及百万像素以上的高分辨率相机等。            图1:LCD模块周围的噪声与ESD传输路径。      仍旧受紧凑设计趋势的推动,实现高分辨率LCD及相机将使设计者面临多种挑战,其中一个主要设计考虑便是这些新模块对电磁干扰(EMI)的敏感性。      对于目前流行的许多手机(尤
[电源管理]
新型低电容<font color='red'>EMI滤波器</font>为手机带来更强抗干扰性能
共模半导体继续推出超低噪声、超高PSRR线性稳压电源GM12051
『共模半导体』在前期推出高性能低压差线性稳压电源GM1205后,再推出一款同系列高端电源芯片-GM12051,GM12051输出电流可达1A,其采用的超低噪声和超高电源抑制比(PSRR)架构对噪声敏感的信号采集和无线通信应用供电。 GM12051被设计为一个高性能电流基准后跟随一个高性能电压缓冲器,其可容易地通过并联以进一步降低噪声、增加输出电流和改善PCB上的散热量。 GM12051系列产品介绍 GM12051可在 225mV 典型压差电压条件下提供1A,该产品正常工作静态电流的典型值为 3.1mA,并在停机模式中低于 1μA。该器件通过片外电阻调节输出电压,能够在宽输出电压范围(1V 至 15V)内保持单位增益工作,从
[电源管理]
<font color='red'>共模</font>半导体继续推出超低噪声、超高PSRR线性稳压电源GM12051
无需与接地层相连的EMI滤波器
在抑制由信号线发出的电磁噪声辐射时,设计人员常常会使用T型或π型结构的EMI滤波器。这些滤波器通过电容器将信号线连接到接地层,由此,信号中不受欢迎的成分或噪声就会通过滤波器流入地面。也就是说,这种方式通过把噪声成分“丢”到地面来降低电磁噪声辐射。 然而,在使用此类EMI滤波器时必须格外小心,因为如果接地层阻抗过高,被丢弃的高频成分就可能在接地层产生电势差,进而形成新的噪声辐射源。从这个意义上说,这些滤波器只能用于接地层阻抗非常低的情况。问题正如Murata Manufacturing公司所指出的:“许多情况下,在手机等小型设备中不太可能有足够大面积的接地层。事实上,人们在开发这些设备的过程中发现,确实存在尽管插入了EMI滤波
[模拟电子]
一种独特的脑电信号放大检测电路设计
  1 引言   脑电信号(EEG]是由脑神经活动产生并且始终存在于中枢神经系统的自发性电位活动,含有丰富的大脑活动信息,是大脑研究、生理研究、临床脑疾病诊断的重要手段。通过对脑电信号进行记录,以提供临床数据和诊断的依据。因此脑电信号的提取具有非常重要的临床意义。   2 设计时常遇到的技术困难   (1)脑电信号十分微弱,一般只有50μV左右,幅值范围为5μV~100 μV。因此它要求放大增益比一般仪器要高得多;   (2)脑电信号频率低,其范围一般在0.5 Hz~35Hz,这使得放大器的低频截止的选择非常困难,当受到尖峰脉冲干扰或导联切换的时候,放大器容易出现堵塞现象;   (3)存在工频50 H
[医疗电子]
一种独特的脑电信号放大检测电路设计
TDK宣布绕线型共模滤波器ACP3225系列量产
尺寸比 4532 系列产品小,同时满足高共模阻抗和大电流的要求 2012 年 4 月 12 日 TDK 株式会社(社长:上釜健宏)开发出作为小型电子设备电源线路的绕线型共模滤波器 ACP3225 系列,并从 2012 年 4 月起开始量产。 近年来,小型电子设备不断趋向多功能化,连续使用及大负荷使用的情况增多,特别是电源线的 EMC 对策变得日益重要。 该产品利用敝社自主的材料技术开发而成,并采用可减少磁芯损耗的低损耗铁氧体作为磁性材料。绕线部分具有小型精密自动绕线的特点。相较于敝社已有的 ACM4532 系列产品,成功实现了小型化,且共模阻抗从以往的 800 Ω 提高到 1,000 Ω ,额定电流也增加
[模拟电子]
TDK宣布绕线型<font color='red'>共模</font>滤波器ACP3225系列量产
噪声对策基础(一):什么是EMI滤波器
此专栏将为大家介绍有关静噪对策的基础知识,从“什幺是EMI?”开始,解说各种静噪元件的工作、使用方法。首先第一讲,为大家介绍一下“什幺是EMI滤波器”。   《前言》   EMI是Electro Magnetic Interference的首字母缩写,意为电磁干扰。也就是说,EMI滤波器是一种为了消除电磁干扰的滤波器。但是,光这幺说还是有点难以理解,让我先从EMI滤波器的制造背景开始说起吧。   近来,电子设备越来越来多地充斥于我们的日常生活中。这些电子设备中使用的是数字电路,而当高频电流通过电路板或走线时,这条路径便成了向外辐射噪声的天线。当附近有其他电子设备时,此电波就会干扰到其他电子设备的正常工作。举个例子
[模拟电子]
噪声对策基础(一):什么是<font color='red'>EMI滤波器</font>
基于AD8205型高端电流传感器的PWM电流控制器
1 引言 在许多工业应用领域,如电池管理系统、电磁系统、液压系统、电机控制系统和汽车电气控制等系统中,都需要高性能电流检测和控制。在这些应用系统中,大都需要在高共模电压情况下检测小差分电压以实现对电流的监控。 2 电流检测的实现 在以往的电流监控系统设计中,电流的检测可采用电流互感器、霍尔电流传感器等隔离型电流传感器来实现,这种方法简单可靠,但成本高,且传感器后一般还需要进行信号调理,电路设计较为复杂。另一种方法是用采样电阻器与负载串联,将负载电流经过采样电阻器转换成电压后进行放大等处理。由于高共模电压的存在,负载电流在采样电阻器上产生的小差分电压的高精度测量比较困难,且检测电路的设计很复杂。因此,如何在高共模电压情况下进行小差分
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved