有源功率因数校正前置升压变换器的设计应用

最新更新时间:2011-11-11来源: 21ic关键字:有源功率因数  变换器 手机看文章 扫描二维码
随时随地手机看文章
1 引言                                 
提高开关电源的功率因数,不仅可以节能,还可以减少电网的谐波污染,提高了电网的供电质量。为此研究出多种提高功率因数的方法,其中,有源功率因数校正技术(简称APFC)就是其中的一种有效方法,它是通过在电网和电源之间串联加入功率因数校正装置,目前最常用的为单相BOOST前置升压变换器Ô­理,它由专用芯片实现的,且具有高效率,电路简单,成本低廉等优点,本文介绍的低成本零点流型APFC控制芯片FAN7528N即可实现该功能。
2 FAN7528的电路特点
2.1 如图1所示,FAN7528N DIP8封装,也有SMD封装(FAN7528M),内部含有自启动定时器,正交倍增器,零电流检测器,图腾柱驱动输出、过压、过流、欠压保护等电路。 
2.2 FAN7528 PFC控制芯片的性能特点
该芯片的最大特点是采用零电流导通变频控制模式,其它性能特点如下:
« 内置启动定时电路;
« 内置R/C滤波器,可省掉外部R/C;
« 过压及欠压比较器;
« 零电流检测器;
« 单象限乘法器;
« 1.5%的内部可调整的带宽;
« 低启动电流及低工作电流
FAN7528是一个引脚简单,高性能的有源功率因数校正芯片。它是被优化的,稳定的,低功耗,高密度的电源芯片,且外围元器件少,节省了PCB布线空间。内置R/C滤波器,抗干扰能力强,对抑制轻载漂移现象增加了特殊电路。对辅助电源范围不要求,输出图腾驱动电路限制了功率MOSFET短路的危险,极大地提高了系统的可靠性。
3 有源功率因数校正­理设计
3.1如图2所示控制芯片采用FAN7528,功率MOSFET Q1的通、断受控于FAN7528N的零点流检测器,当零电流检测器中的电流降为零时,即升压二极管D1中的电流为零时,Q1导通,此时的电感L开始储能,电流控制波形如图3所示,这种零电流控制模式有以下优点:
« 由于储能电感中的电流为零时,Q1才能导通,这样就大大减少了MOSFET的开关应力和损耗,同时对升压二极管的恢复时间没有严格的要求,另一方面免除了由于二极管恢复时间过长引起的开关损耗,增加了开关管的可靠性。
« 由于开关管的驱动脉冲时间无死区,所以输入电流是连续的并呈正弦波,这样大大提高了系统的功率因数。
3.2 应用设计举例
技术要求:
« 输入电网电压范围:AC90V-265V
« 输出直流电压: DC400V
« 输出功率:150W
PFC电感的设计
确定磁芯的型号
磁芯选用:EI40材料:PC40(AL=4860±25%)nH/N2
输出功率:P0=V0I0 式中V0为输出电压,I0为输出电流
计算电感的峰值电流Ipk(η1=0.98)
Ipk=2V0I0/(η1×Vin(peak)),将输入电压Vin=85V,264V分别代入求得,
Ipk1=2.71A,Ipk2=0.87A
计算电感的电感量L(设定最小开关频率fsw(min)=33kHz)
L=η1/(4 fsw(min) V0I0(1/V2in(peak)+1/ (Vin(peak)( V0- Vin(peak)))),将Vin=85V,IVin=264V分别代入上式求得,L1=560μH,L2=530μH,实际取L=535︿550μH电感的电气理图:如图4所示    
升压MOSFET的选择:
计算流过MOSFET的最大有效值电流IQrms
IQrms=2√2 V0I0(max)/(η1×Vin(LL))×(1/6-4√2 Vin(LL)/(9π×V0))1/2
代入相关数值得,IQrms=0.955A
故流过MOSFET的峰值电流取为Ipk =1.2×IQrms=1.15A
计算MOSFET所承受的最大反向电压VDS(max)
VDS(max)=1.2×264×√2=450V
确定MOSFET的规格型号
根据Ipk、VDS(max)及降低功耗的Ô­则,选用Fairchild的MOSFET,其型号及技术指标如下:
FQP13N50,VDSS=500V,ID=12.5A,RDS(on)=0.43Ω,PD=170W TO-3P
升压二极管的选择:
计算流过二极管的平均电流IDavg
IDavg=I0(max)=0.4075A
故流过二极管的峰值电流取为Ipk =1.2×I0(max)=0.489A
计算二极管的最大反向电压VR(max)
VR(max)=1.2×V0=480V
确定二极管的规格型号
根据Ipk、VR(max),选用IXYS的HiPerFREDTM二极管,其型号及技术指标如下:
DSEP 6-06AS,VRRM=600V,IFAV=6A,Ptot=55W,TO-252 A
整流桥的选择
计算整流桥所承受的最大反向电压VR(max)
VR(max)=√2×Vin(max)=375V
计算流过整流桥的有效电流Irms
Irms=Pin/V(in-max)rms=1.36A
故流过整流桥的最大电流值:1.4×Irms=1.90A
确定整流桥的规格型号
根据上述条件选用RECTRON的整流桥,其规格型号及技术指标如下:
RS406L,VRRM=600V,6A
其它参数按常规APFC,参照FAN7527使用说明,此处略。
如图5所示FAN7528N在APFC前置变换器中的应用电路
4 使用FAN7528的问题及解决方法
« PFC中的自举二极管速度越快越好;
« 注意MOSFET的源极与地线的连接,减少谐振的发生;
« PFC升压后高压电容的容量要够,尽量采用标准值;
« 整流桥后的金属化薄膜电容调整可以改变谐振;
« FAN7528的1脚和3脚之间加R/C,适当调整参数可以减少轻载不稳定;
« FAN7528的1脚和2脚之间的电容值影向启动时间;
« 该芯片在使用中发现,有很多优点,也有缺点。
5 结语
该设计¾­多次反复试验,PFC升压电感参数调整,及其它外围参数设计试验确定,功率MOSFET等器件的计算,已成功设计出150W升压前置变换器,且后级设计DC-DC,已成功用于24VDC/5A输出,120W功率因数校正开关电源,功率因数高达0.998,整机效率高达88%。
按照此方案还可以设计出200W-300W功率电源。实践证明该方案是可行的,有一定的应用价值。
参考文献:
[1] FAN7528N使用手册及应用设计,2007年2月
[2] 赵珂,苏达义 MC34262系列PFC控制芯片的应用研究[J]。电源技术应用,2001年,第12期: P36-38。
关键字:有源功率因数  变换器 编辑:探路者 引用地址:有源功率因数校正前置升压变换器的设计应用

上一篇:双管正激参数及控制环路的SABER仿真设计
下一篇:设计面向高级数据系统的高效、高功率 DC/DC 电源架构

推荐阅读最新更新时间:2023-10-18 16:03

提升LED驱动能力的级联变换器
用3节碱性电池给20个~30个白色 发光二极管 ( LED )供电,呈现了一个和传统的升压变换器有关的十分有趣的问题。所需的升压比率和占空因子是不切实际和不可能实现的。如果用现存元件来设计并且级联两级升压是可以产生合理结果的。这种拓扑已经形成大约十年了,而工程师往往认为它太复杂。但是,这种方法对元件方面的要求有一定的好处。第一级转换不需要容忍第二级转换的总输出电压,第二级转换没有第一级转换的电流要求。如果占空因子不是一个关注点,单级升压的电流/电压需求将需要一个更大,更昂贵的转换器,这个转换器可能轻易达到级联升压中两个转换器的成本。你也可以实现电感、整流器、滤波 电容器 的类似的优势。 原文位置 这个设计实例可以给24个串接的
[应用]
输入浪涌电流抑制模块在AC/DC变换器的应用
摘要:分析了电容输入式滤波整流器上电时对电源的浪涌电流冲击及危害,介绍了常规解决办法及存在的问题,提出一种实用解决方案。 关键词:浪涌电流;抑制;AC/DC变换器 1 上电浪涌电流 目前,考虑到体积,成本等因素, 大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。 浪涌电流会造成电源电压波形
[电源管理]
降压式DC/DC变换器基本工作原理
  降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。   降压式DC/DC变换器基本工作原理电路如图所示。VT1为开关管,当VT1导通时,输入电压Vi通  过电感L1向负载RL供电,与此同时也向电容C2充电。在这个过程中,电容C2及电感L1中储存能量。当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。二极管VD1为续流二极管,以便构成电路回路。输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。   降压式DC/DC变换器基本原理电
[电源管理]
降压式DC/DC<font color='red'>变换器</font>基本工作原理
反激变换器副边同步整流控制器STSR3应用电路介绍
1 概述 本文给出ST公司2003年新推出的开关电源IC产品STSR3应用电路分析。它是反激变换器副边同步整流控制器,具有数字控制的智能IC驱动器。采用STSR3作同步整流控制芯片的反激变换器基本电路简化结构见图1。STSR3的内部功能方框见图2,其引脚排列见图3。   图1 STSR3典型应用电路简化示意图 图2 STSR3内部功能方框图 图3 STSR3各引脚排列图 STSR3智能驱动器IC可提供大电流输出,以正常地驱动副边的功率MOSFET,使之作为大电流输出的高效率反激变换器中的同步整流器。根据取自隔离变压器副边的一个同步时钟输入,IC产生一个驱动信号,它具有与原边PWM信号相关的死区时
[嵌入式]
ICL7660型极性反转式DC/DC电源变换器
这类 变换器 亦称“泵电源”,其特点是利用电荷的原理将正压输入变成反极性的负压输出,即UO=-U1.它利用振荡器,模拟开关和泵电容来实现电压极性转换。典型产品有 1、ICL7660的工作原理 2、ICL7660的特殊应用
[电源管理]
ICL7660型极性反转式DC/DC电源<font color='red'>变换器</font>
全桥变换器结构 软开关移相电源设计
全桥 变换器是 开关电源 的基础拓扑结构之一,其作用不言而喻,小编在本文将要分享的这款设计就是采用全桥变换器结构, MOSFET 作为开关管来使用,采用移相ZVZCSPWM控制,即超前臂开关管实现 ZVS、滞后臂开关管实现ZCS。 电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、 VT2的反并超快恢复 二极管 ,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频,VD3、VD4是反向电流阻断二极管,用来实现滞后臂 VT3、VT4的ZCS,Llk为 变压器 漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等 滤波器 件
[电源管理]
全桥<font color='red'>变换器</font>结构 软开关移相电源设计
同轴变换器原理及射频功率放大器宽带匹配设计
射频功率放大器的宽带匹配设计 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽
[电源管理]
同轴<font color='red'>变换器</font>原理及射频功率放大器宽带匹配设计
改进的单级功率因数校正AC/DC变换器的拓扑综述
摘要:单级功率因数校正(简称单级PFC)由于控制电路简单、成本低、功率密度高在中小功率场合得到了广泛的应用。但是,单级PFC中存在一些问题,如储能电容电压随输入电压和负载的变化而变化,在输入高压或轻载时,电容电压可能达到上千伏;变换器的效率低;开关损耗大等缺点。介绍了几种改进的拓扑结构以解决这些问题。 关键词:功率因数校正;AC/DC变换器;单级 1 概述 为了减小对交流电网的谐波污染,国内外都制订了限制电流谐波的有关标准(如IEC1000-3-2)。因此,要求交流输入电源必须采取措施降低电流谐波含量, 提高功率因数。目前广泛采用的有源功率因数校正方法有两种,即两级PFC和单级PFC。两级PFC方案 如图1所示,将PF
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved