互阻放大器带宽计算方法

最新更新时间:2011-11-20来源: 与非网关键字:互阻放大器  增益电阻  运算放大器 手机看文章 扫描二维码
随时随地手机看文章

在进行电路设计时,设计者往往把运算放大器看成是理想的。在低频段、低精度的情况下按照理想运放进行设计不会引入误差,但是在频率要求较高的场合,必须考虑运放的实际物理特性,否则就会产生带宽较低或者环路不稳定等负面影响。

一个集成运放由很多的基本元器件组成,不同的元器件可能会造成各自不同的极零点,运算放大器的频率响应是完全随机化的,这样就造成了运放的频率响应不可预测。运放是一个极其复杂的系统,对其进行精确的数学描述是相当复杂的。在设计电路时,设计者当然可以根据厂家提供的Spice模型进行系统仿真。这对设计人员来说是可行的,但是不能从宏观上提供有效的预测和指导,增加了设计和调试的复杂度。

为了方便对运放进行一般意义上的建模,生产厂家在版图中引入一个主导极点。主导极点的存在使得运放的频率响应特性很像单极点系统,即从截止频率开始每十倍频程有20 dB的衰减。在运算电路的频率分析中,把运放当作单极点系统看待,会使电路的分析变得更加容易一些。

在采用运放的电压放大电路中,在单极点近似下可以得到大部分频带区域内增益和带宽的乘积为一常数,即增益带宽积。在进行电压放大电路设计时,设计者往往得益于增益带宽积的概念。互阻放大器(Transresistance Amplifier)是在光电探测器前置放大器中经常使用的一种电路结构,然而遗憾的是增益带宽积这一概念并不适用于互阻放大器的带宽计算。本文以OP37为例,首先介绍了增益带宽积的概念;然后用单极点近似的思路得到互阻放大器增益与带宽之间的关系,指出互阻放大器的增益和带宽的平方的乘积为一常数,为互阻放大器的设计提供了宏观指导。

1 增益带宽积

图1是一个采用OP37实现的同相比例运算电路,反向端通过R接地,Rf为反馈电阻,R’=R∥Rf是为了保证集成运放输入级差分放大电路的对称性,Vin为输入电压,Vout为输出电压。

 

在单极点近似下,运放的输入压差和输出电压之间的传递函数可简单表示为:

 

增益带宽积也可以看作是当运放的开环增益为0 dB时的频率值。对于特定的运放增益和带宽二者是矛盾的,若要求系统的带宽较宽,则必须牺牲增益,这就是为什么在带宽要求较高的应用中往往采用多级放大的原因。增益带宽积在运放的选型时是一个非常重要的指标,一般芯片的数据手册中都会明确地给出这一指标。

2 互阻放大器的带宽计算

2.1 互阻放大器的结构与应用

在激光雷达、激光陀螺信号处理等应用中经常使用雪崩光电二极管等来探测光信号,从而提取出感兴趣的信息。将二极管产生的电流信号转换为电压信号需要采用图2所示的互阻放大器结构。

 

图中运放的正向端直接接地,Dphoto是接收信号用的光电二极管,反馈电阻Rf决定增益的大小,Vbias是反向偏置电压,它能够提高光电管相应的线性度,减小结电容,增大电路带宽。为了研究互阻放大器的频率特性,有必要使用光电管Dphoto的等效电路模型。

图3为光电管的交流等效电路。其中,Is为光控恒流源,Cj是二极管耗尽区产生的结电容,它是决定电路带宽的一个重要指标,Rj是光电管的等效电阻,一般来说Rj都会很大,通常会大于100 MΩ,Rj上所分得的电流将会很小,故Rj可忽略。

 

设照射到二极管的光功率为Pi,二极管的电流响应度为Ri(其单位一般是A/W),则光电管产生的电流的大小为:

采用图3所示的光电管等效模型,并忽略Rj,图2中的电路结构可简化为图4。

 

实际上运放也有输入共模电容,但它可以并入Cj中。在交流情况下,其带宽由电容值Cj和运放的频率特性共同决定,而上述增益带宽积的概念只适用于电压放大器,在互阻放大器中并不适用。本文将采用上述的单极点模型,通过适当的近似,得出互阻放大器的带宽计算公式。

2.2 互阻放大器的增益带宽关系

上述增益带宽积的概念并不适用于互阻放大器,但通过推导,将会得出增益带宽积也是互阻放大器的一个重要参数,在增益带宽积为恒定值的运放中,增益值和带宽仍然是矛盾的。

在图4中,由于运放的输入阻抗很大,根据米勒效应,Vout和Is之间的关系可以表达为:

 

一般情况下Cj≠O,并且Cj不可以忽略,它是影响带宽的一个重要参数。将式(1)代入式(12)可得传递函数为:

 

下面将举例说明式(18)一般是能够满足的。假设Cj=20 pF;Rf=50 kΩ,可得:

 

在式(25)中Rf为互阻放大器的增益,ω3dB为对应3 dB带宽的源频率,这样就完成了互阻放大器增益带宽关系的理论分析和计算。式(25)指出在源的结电容恒定的情况下,互阻放大器的增益与带宽的平方乘积是一个常数,显然在互阻放大器中,增益和带宽仍是矛盾的。式(25)是以源频率的形式表达的,两边同时乘以(2π)2也可表达为频率的形式:

 

2.3 仿真验证

为了验证式(25)的正确性,在Multisim中对图3所示的电路进行仿真,将结电容Cj取一恒定值,运放采用OP37,改变Rf的值,同时测量系统的3 dB带宽,得到实验结果如表1所示。

从表1可以看出,当取不同的增益电阻时,值的变化很小,基本可以看作是一个常数。需要说明的是为了增加工作电路的稳定性,并展平增益曲线,一般会在Rf并联一个很小的电容Cf,Cf的引入会使带宽有所下降。文献提供了Cf最小值的计算方法,按照文献所述,一般情况下Cf<3 结论

本文得出了互阻放大器的带宽计算方法,为互阻放大器提供了基本指导。在满足式(18)的条件下,互阻放大器的增益与带宽的平方乘积近似为一常数。在电路设计时,为了满足带宽的设计需要,可减小Rf的值,既减小互阻放大器的增益,在后续电路中通过电压放大的方式进行增益的调整。和电压放大电路的设计类似,在互阻放大器中为了增加系统的带宽,仍可采用多级放大的结构来提高系统的带宽。

关键字:互阻放大器  增益电阻  运算放大器 编辑:探路者 引用地址:互阻放大器带宽计算方法

上一篇:基于SOPC的雷达多功能接口模块的设计与实现
下一篇:控制灯光的开关电路

推荐阅读最新更新时间:2023-10-18 16:06

凌力尔特公司 (Linear Technology Corporation) 推出双路和四路宽输入范围运算放大器 LT6016 和 LT6017
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2013 年 2 月 14 日 – 凌力尔特公司 (Linear Technology Corporation) 推出双路和四路宽输入范围运算放大器 LT6016 和 LT6017。这些放大器兼有高精准度以及凌力尔特独有的 Over-the-Top® 架构所具备的坚固性和通用性。输入失调电压最大值为 50µV,输入偏置电流为 5nA,低频噪声为 0.5µVP-P,这使得这些器件非常适用于多种精准的工业、汽车及仪器应用。 Over-the-Top 输入提供了远超过 V+ 轨的真正工作。LT6016 / LT6017 在输入比V– 高出多达 76V 时仍能正常工作,而不受
[模拟电子]
运算放大器与仪表放大器输入特性比较
仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。其输入偏置电流也应很低,典型值为1 nA至50 nA。与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。 运算放大器 的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 运算放大器与
[模拟电子]
<font color='red'>运算放大器</font>与仪表<font color='red'>放大器</font>输入特性比较
三种电路拓扑对运算放大器DC参数测试
1979 年 1 月,《电子测试》发表了一篇文章称,一款单个测试电路可“执行对任何运算放大器全面检查所需的所有标准 DC 测试”(参考资料 1)。单个测试电路在那个时候可能够用,但今天并非如此,因为现代运算放大器具有更全面的规范。因此,单个测试电路不再包揽所有 DC 测试。 现在经常使用三种测试电路拓扑对运算放大器 DC 参数进行工作台及生产测试。这三种拓扑为 (1) 双运算放大器测试环路、(2) 自测试环路(有时称故障求和点测试环路)和 (3) 三运算放大器环路。您可使用这些电路测试 DC 参数,其中包括静态电流 (IQ)、电压失调 (VOS)、电源抑制比 (PSRR)、共模抑制比 (CMRR) 以及 DC 开环增益 (AOL)
[模拟电子]
安森美推出新系列超低能耗精密运算放大器
新的零漂移、低压器件极适合必须于在宽工作温度范围提供高稳定性的工业、消费、无线、物联网(IoT)及汽车领域的精密应用。 2014年12月19日 – 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)推出一系列价格适宜的精密CMOS运算放大器,这些器件提供零漂移工作和领先业界的静态电流,用于前端放大器电路及电源管理设计。NCS325及NCS333运算放大器旨在用于工业、白家电、电信、可穿戴、物联网(IoT)、测试设备及仪表应用,增强电机控制反馈及电源控制环路的精度,因而有利于提升系统总能效。这些器件与通过汽车认证 (AEC-Q100 1级) 的新的NCV333运算
[模拟电子]
集成运算放大器输出零点的调节
集成运算放大器在应用时,如果是交流应用,而对输出幅度要求不高,或在直流应用时对温漂要求不严,或者是开环应用,或输出端要垫起一个电平等情况下,也可以不加调整输出零点而直接应用.
[模拟电子]
集成<font color='red'>运算放大器</font>输出零点的调节
ICL7650斩波稳零运算放大器的原理及应用
   ICL7650是Intersil公司利用动态校零技术和CMOS工艺制作的斩波稳零式高精度运放,它具有输入偏置电流小、失调小、增益高、共模抑制能力强、响应快、漂移低、性能稳定及价格低廉等优点。   1 芯片结构   ICL7650采用14脚双列直插式和8脚金属壳两种封装形式,图1所示是最常用的14脚双列直插式封装的引脚排列图。各引脚的功能说明如下:   CEXTB:外接电容CEXTB;   CEXTA:外接电容CEXTA;   -IN:反相输入端;   +IN:同相输入端;   V-:负电源端;   CRETN:CEXTA和CEXTB的公共端;   OUTCLAMP:箝位端
[模拟电子]
Intersil推出新专利双极工艺技术的运算放大器
Intersil公司今天宣布,推出首款采用该公司新的专利双极工艺技术的运算放大器 --- ISL28207。 Intersil的ISL28207是双40V低功耗双极精密运算放大器,具有出色的直流精度和极好的温漂性能。器件的最大偏置电压低至75μV,典型输入偏置电流为60pA。输入偏置电压的最大温漂仅有0.65μV/℃,输入偏置电流的温漂仅有0.2pA/℃,使其成为16bit和24bit应用的理想之选。ISL28207具有4.5V~40V的宽工作电压范围,工作温度范围为-40~+125℃。 ISL28207的核心优势包括: 先进的偏置电流抵消技术实现了在工作温度范围内的极低偏置电流
[模拟电子]
Intersil推出新专利双极工艺技术的<font color='red'>运算放大器</font>
运算放大器的简易测量
运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。   通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。图1显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有极高直流开环增益的稳定环路。开关为执行下面所述的各种测试提供了便利。 图1. 基本运算放大器测量电路   图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。附加的“辅助”运
[工业控制]
<font color='red'>运算放大器</font>的简易测量
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved