开关电源“疑难杂症”得医治

最新更新时间:2011-11-21来源: 互联网关键字:开关电源  元器件  参数 手机看文章 扫描二维码
随时随地手机看文章

Q1:如何为开关电源电路选择合适的元器件和参数?

Answer:很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。

一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。

开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。

输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。

对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。

一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。

Q2:如何调试开关电源电路?

Answer:有一些经验可以共享给大家:(1) 电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2) 一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

Q3:为什么要接地?

Answer:接地技术的引入最初是为了防止电力电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也引入了“地”的概念。

Q4:接地的定义。

Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是“线路电压的参考点”;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。注意要求是“低阻抗”和“通路”。

Q5:常见的接地符号。

Answer: PE、PGND、FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地。

Q6:合适的接地方式

Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

Q7:信号回流和跨分割的介绍

Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的)

Q8:为什么要将模拟地和数字地分开,如何分开?

Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。

一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。

Q9:单板上的信号如何接地?

Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。

Q10:单板的接口器件如何接地?

Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。

Q11:带屏蔽层的电缆线,屏蔽层如何接地?

Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净。


 

关键字:开关电源  元器件  参数 编辑:冰封 引用地址:开关电源“疑难杂症”得医治

上一篇:低抖动Q开关光电转换及触发系统
下一篇:电源纹波分析及测试一点通

推荐阅读最新更新时间:2023-10-18 16:07

满足安全环保需求的小功率集成的AC/DC转换器设计
     北京威旺达电子推出基于Starplug的小功率AC/DC转换器放案。随着半导体技术的不断进步,为系统设计师、电路设计师实现技术创新提供了一个先进的技术平台,从而有许许多多新颖的、时尚的便携式电子产品呈现在世人面前,像PDA、3G手机、各种个人电子医疗保健装置以及层出不穷的游戏机等等。这些便携式电子产品大多需要高档的开关电源来供电或充电,此外,还有许多先进的便携式仪器仪表,工控装置乃至像剃须刀这样的日常用具也需要开关电源。正是在这种背景下,PHILIPS推出了STARplug电源IC产品系列。      该系列不但满足了便携式电子产品微功耗、高可靠、微小型化等要求,还满足了使用安全性和环保的需求。       关于STARp
[电源管理]
满足安全环保需求的小功率集成的AC/DC转换器设计
用矢量网络分析仪准确测量脉冲信号的S参数
  传统上,矢量网络分析仪被用来测量组件的连续波形(CW)S参数性能。在这些操作环境下,分析仪常常作为窄带测量仪器工作。它向组件传输已知的CW频率并测量CW频率响应。如果我们想查看单个CW频率的响应,我们可以在频率看到单个的频谱。分析仪具有一个内置的源和接收器,它们被设计成工作在同步模式下,利用窄带检测来测量组件的频率相应。大多数的分析仪可以配置用来对许多频率进行频率扫描。   在某些情况下,加到组件上的信号必须以一定的速度和持续时间进行脉冲调制(开关)。如果我们要查看一个单音脉冲调制的频率响应,它将包含无数的频率成分从而使标准窄带VNA的使用变得很困难。本文讲述了如何使用Agilent科技公司的PNA矢量网络分析仪进行配置
[测试测量]
用矢量网络分析仪准确测量脉冲信号的S<font color='red'>参数</font>
用双高压型肖特基整流器提高开关电源效率的方法问答
Q1:TMBS电场强度最强的地方在沟槽深度有何益处? :肖特基表面金属层存在游离电子,对肖特基的漏电流和反向恢复时间影响比较大,所以在设计的时候,就把电场强度最强的地方从表面移到沟槽深度的地方,这样可以避免硅表面杂质在高压高热状态下产生游离状态,影响肖特基的耐压和漏电,同时硅的内散热比较均匀,这样更有利于温度的扩散作用。 Q2:请问高压型肖特基整流器现在应用在哪方面? :高压型肖特基整流器绝大部分是应用在电流,像笔记本电脑的充电器,游戏机的电源,DC/DC电源,台式机的power supply,LCD TV的电源,很多电源上面都可以用到肖特基二极管。 Q3:肖特基二极管有反向恢复时间Trr吗? TMBS为何能突破一般传
[电源管理]
开关电源之正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算 正激式 开关电源 变压器参数的计算主要从这几个方面来考虑。一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是 变压器 初、次级线圈的匝数比,以及 变压器 各个绕组的额定输入或输出电流或功率。关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。 正激式开关电源变压器初级线圈匝数的计算 图1中,当输入电压Ui加于开关电源 变压器 初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也
[电源管理]
<font color='red'>开关电源</font>之正激式<font color='red'>开关电源</font>变压器<font color='red'>参数</font>的计算
开关电源原理与设计(连载52)
      2-1-1-3.单激式开关电源变压器的伏秒容量与初级线圈匝数的计算       在图2-1中,当有直流脉冲电压输入变压器初级线圈a、b两端时,在变压器初级线圈中就有励磁电流流过,励磁电流会在变压器铁芯中产生磁通Φ ,同时在变压器初级线圈两端还会产生反电动势;反电动势电压的幅度与输入电压的幅度相等,但方向相反。因此,根据电磁感应定律,变压器铁芯中磁通Φ 的变化过程由下式决定: 图2-1 单激式变压器开关电源等效电路       上面(2-13)、(2-14)、(2-15)式中,US为变压器的伏秒容量,US = E×τ ,即:伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,单位为伏秒,E为输入脉冲电压
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载52)
基于TOP223Y多路单端反激式开关电源的设计方案(二)
3.3 钳位保护电路   当功率开关关断时,由于漏感的影响,高频变压器的初级绕组上会产生反射电压和尖峰电压,这些电压会直接施加在TOPSwitch芯片的漏极上,不加保护极容易使功率开关MOSFET烧坏。加入由R1、C2和VD1组成经典的RCD钳位保护电路,则可以有效地吸收尖峰冲击将漏极电压钳位在200 V左右,保护芯片不受损坏。推荐钳位电阻R1取27 kΩ/2 W,VD1钳位阻断二极管快恢复二极管耐压800 V 的FR106,钳位电容选取22 nF/600 V的CBB电容。   3.4 高频变压器   3.4.1 磁芯的选择   磁芯是制造高频变压器的重要组成,设计时合理、正确地选择磁芯材料、参数、结构,对
[电源管理]
基于TOP223Y多路单端反激式<font color='red'>开关电源</font>的设计方案(二)
教你简单区分模拟电源、开关电源、数字电源
在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。 模拟电源介绍 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。 模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的
[电源管理]
一种新颖的限流比较器的设计
   1 引言   近年来,LDO(Low Dropout)线性稳压器和DC/DC 变换器等电源管理芯片已广泛应用于便携式电子系统中 。但是,开关稳压器相对线性稳压器降低了平均输入电流,提高了效率 。Step-Down 电源属于DC/DC 变换器中的降压变换器,它的主要缺点是,在轻载时比如手机待机时,静态电流较高,显著降低了电池的使用寿命,所以在低负载条件下,我们通过PFM 限流比较器来控制芯片使之进入Idle 模式,这样就大大延长了电池寿命,提高了芯片的效率。    2 本文采用的DC-DC 降压变换器电路结构   本文采用的DC-DC 降压变换器结构采用同步校正器代替传统的二极管,极大地提高了DC-DC 降压
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved