基于ICE2QS02G的液晶电视开关电源设计

最新更新时间:2011-11-21来源: chinaaet关键字:开关电源  液晶电视  ICE2QS02G 手机看文章 扫描二维码
随时随地手机看文章

  1 引言:

  目前, 在全球范围内,LCD TV 凭借其技术性能先进、外型美观时尚、工作稳定、可靠性高等优点正迅速走进家庭。预计在未来几年,LCD TV 将是数字电视时代的主流产品。随着LCD TV 应用越来越广泛,对电能的消耗也越来越大,节能环保压力剧增。因此,提高LCD TV 开关电源能效的需求越来越迫切。为此,世界上多个政府机构和行业组织纷纷针对不同尺寸的电视机制定了全新的功耗规范,如美国的“能源之星3.0”标准和德国的“蓝色天使”标准,以此来提高电能的使用效率,降低电能消耗。笔者将探讨如何优化PFC 级、主DC/DC 级和待机转换器的设计方案, 以便更好地提高LCD TV 开关电源的能效,满足全新的功耗规范标准。

  2 液晶电视电源管理系统结构:

  要提高LCD TV 开关电源的能效,很重要的方面是针对液晶电视电源管理系统的结构,分析功率损耗的来源,有针对性地采取措施来降低能耗。

  通常液晶电视电源管理系统由电源单元、DC/AC 逆变器、信号处理系统这3 部分组成, 其典型结构如图1所示。电源单元由PFC 预调节器、主DC/DC 级和待机转换器组成,用于将交流输入电压(85~265 V)转换成较低的直流输出电压(24 V,12 V,5 V 和3.3 V),其中主DC/DC 级输出的24 V 或12 V 直流电压用于为背光逆变器和信号处理系统供电, 待机转换器输出的5 V 或3.3 V直流电压为待机部件和微控制器供电。DC/AC 逆变器负责将24 V 或12 V 直流电压转换成高交流电压(例如1 200 V 交流电压),为背光灯供电。信号处理系统用于控制和处理声音与图像信号。


  根据安森美半导体有限公司(简称“安森美”)测算,LCD TV 开关电源的PFC 级损耗和主DC/DC 级损耗为LCD TV 开关电源的主要损耗, 其中PFC 级损耗约占电源总损耗的40%, 主DC/DC 级损耗约占电源总损耗的60%。为此,笔者将优化PFC 级和主DC/DC 级的设计,以降低二者的功耗,同时进行待机转换器的设计,以满足开关电源待机功耗应低于1 W 的全新功耗规范标准要求。

  3 PFC 预调节器解决方案:

  为了降低PFC 级的功耗, 实现PFC 级的能效提升目标,需要考虑拓扑结构和PFC 控制器的工作模式。从设计的复杂程度和电源解决方案的总成本等方面考虑,最佳解决方案是:拓扑结构为Boost 升压结构,PFC 控制器的工作模式为连续导通(CCM)模式。针对CCM 工作模式,PFC 控制器可选择安森美或英飞凌科技股份公司(简称“英飞凌”)提供的解决方案,均能使功率因数高于93%,满足ICE61000-3-2 标准要求。但是,若综合考虑性价比、可靠性和高功率因数等多种因素,选择安森美推出的PFC 控制器NCP165 4是更合理的解决方案。采用该控制器只需极少的外围元件, 这使得PFC 级的设计更加简洁。这种控制器工作功耗极低,可以满足提升PFC级能效的要求,同时它还具有快速瞬态响应、启动电流和关闭电流极低等特点,具有众多安全保护特性,如浪涌电流检测、过压保护、用于开环检测的欠压检测、软启动、精确的过流限制、真正的过载限制等。总之,它集成了构建紧凑而稳固的PFC 所需的所有特性。除控制器部分外,选择具有低导通电阻和低寄生电容的全新CP 系列Cool-MOS 开关管以及软恢复升压二极管也是提升效率的最佳选择。综上所述,LCD TV 开关电源中的PFC 转换器电路如图2 所示。


主DC/DC 级解决方案 #e#

 

  4 主DC/DC 级解决方案:

  目前,在提高主DC/DC 级的效率方面,准谐振(QR)模式是最佳解决方案。QR 模式对负载变化的反应快,非常适合负载从最低(甚至为零)变到最大额定功率的情况,它可以实现开关管的零电压开通,从而有效地降低开通时的电流尖峰, 减少开通时电流尖峰引起的EMI 噪声,提高了效率。

  在QR 理论中,当功率额定值小于200 W 时,建议在DC/DC 级采用准谐振反激式拓扑; 当功率额定值超过200 W,可使用LLC 谐振转换器。但是在实际应用中,为了更好地在性能和成本之间取得平衡,设计者常常采用准谐振反激式变换器配上适当的控制芯片作为主DC/DC 级的首选解决方案。

  目前, 常用的准谐振反激式变换器控制芯片有安森美的NCP1337、意法半导体公司的L6566、昂宝公司的OB2202 和OB2203 和英飞凌的ICE2QS02G。其中,NCP1337,L6566,OB2202 和OB2203 应用在小功率LCDTV 开关电源中,它们的性价比相仿。而ICE2QS02G 不但可应用于小功率场合,还可以应用于中高功率场合,另外从性价比方面看,它也优于其他几种芯片。为此,在准谐振反激式变换器方案中,笔者选用ICE2QS02G 作为控制芯片。

  ICE2QS02G 拥有数字降频技术,使得开关频率随着负载的降低而降低,同时在整个负载范围内,控制器能根据负载情况在不同的谷底点导通MOSFET, 使得转换器的开关损耗和传导损耗始终保持平衡, 转换器获得最高运行效率,系统平均效率得到大幅度的提高。此情况下,就可以解决传统的准谐振反激式转换器(仅具备最大频率限制)在自由运行工作时所出现的如下问题:当系统负载在满载范围(50%~70%)时,开关频率将会增大许多,使得设计者必须付出很大的努力来取得成本与优化设计的平衡。此外,ICE2QS02G 还具备多种用户可调的保护功能, 旨在保护系统并使得该IC 适用于不同的应用场合。在故障模式下,例如开环控制回路/过载、输出过压和变压器绕组短路等, 该器件将切换至自动重启模式或栓锁模式。通过采用逐周期峰值电流限制和折返校正等方法,可降低变压器尺寸,优化次级二极管的电流等级,从而提高设计的成本效率。

  综上所述,主DC/DC 级采用准谐振反激式转换器以及对应的控制芯片ICE2QS02G 是很好的解决方案。另外,在准谐振反激式转换器中选用高压MOSFET 开关管(例如全新的800 V CoolMOS C3 系列开关管), 可以降低主传导损耗和MOSFET 的导通损耗,可使效率再提高1%~3%,很好地改善了主DC/DC 级的效率。

  5 待机转换器解决方案:

  在全新的功耗规范标准下, 要求LCD TV 开关电源待机功耗应低于1 W。在此情况下,输出功率很低甚至为零,系统的输出电流接近于零,MOSFET 和二极管的导通损耗以及铁芯损耗可以忽略, 二次测二极管的关断损耗、MOSFET 的开启损耗也可以忽略, 待机状态下的主要损耗是MOSFET 关断损耗和启动电阻损耗。因此,降低这两方面的损耗是降低待机功耗和设计待机转换器的关键点。目前,设计者的首选解决方案是:设计独立的待机转换器,在待机转换器中采用固定频率反激式拓扑结构及其相应的控制芯片。

  在降低启动电阻损耗方面,传统的方法多为降低启动电流同时增大启动电阻, 但实践证明该方法的功效不明显。为此,英飞凌提出了用一个开关电路替代电阻的方法,在启动过程中,启动电路开通,而当IC 被激活后,启动电路关闭。实践证明该方法可消除启动电阻的损耗。英飞凌的CoolSET F3 芯片就集成了这样的电路以降低电源的损耗。

  在降低MOSFET 关断损耗方面, 由于MOSFET 关断损耗与开关频率成比例,因而频率越低损耗越小。然而,从开关电源基本原理可知:在正常工作模式下,需要利用高频来减小变压器和滤波器等器件的尺寸, 而在待机模式下,低频率有利于减小损耗。所以在待机转换器解决方案中应选用具有自动降频技术的集成功率IC。在一般的负载范围,IC 工作在高频, 当输出功率下降到某一特定阈值时,IC 将会自动减小开关频率。

  在“自动降频技术”方面,目前较为普遍的有脉冲跳跃模式、突变模式及非导通时间调变等方式。在这些方式中,以英飞凌推出的主动突变模式性能最优越,该模式能在系统结束待机时保持输出调节并为负载波动做好准备。从这方面考虑,再结合设计的复杂程度和成本等因素,待机转换器选择英飞凌最新推出的ICE3BR4765J是很好的解决方案。ICE3BR4765J 具备独有的主动突变模式,加上还应用了Bi-CMOS 生产制程,使产品实现了一个极低的待机功耗,例如可实现在12 W/5 V 的产品上仅有25 mW 的待机功耗。ICE3BR4765J在固定的开关频率上,加入了±4%的频率抖动功能,使整体EMI 水平降低, 从而减小用户对额外的滤波器的要求和生产成本。ICE3BR4765J 内部集成了650 V 的启动单元,大大简化了外围电路的设置,从而降低了系统成本。

  综合以上分析,优化的待机转换器方案是:独立设计反激式待机转换器,并采用英飞凌最新推出的集成功率IC 芯片ICE3BR4765J。

  基于上述PFC 级、主DC/DC 级和待机转换器的解决方案, 可设计出图3 所示的LCD TV 开关电源解决方案框图。

6 系统性能分析:

  在上述电源解决方案的基础上设计出一款LCD TV开关电源,其技术指标如下:1) 输入电压为交流85~265 V;2) 输入频率为47~63 Hz;3) 输入谐波符合EN61000-3-2 标准;4) 正常运行时主DC/DC 级输出为24 V/6 A,12 V/3 A,正常运行时待机输出为5 V/2 A;5) 待机运行在5 V/0.1 A 输出条件下引脚功耗小于1 W。

  在上述技术指标下对系统性能进行了测试。图4 为在满载条件下系统输入功率因数与输入线路电压的对比情况。由图4 可看出,不同输入线路电压条件下,功率因数均高于94%,系统具有很高的功率因数。图5 为在不同负载和线路电压条件下的系统待机功耗。由图5 可看出,待机时系统输入功率很低,满足“能源之星3.0”的要求。图6 为在额定线路输入电压条件下,不同负载情况的系统效率。由图6 可看出,系统满负载效率超过87%,系统平均效率较高。

 

  7 小结

  LCD TV 开关电源所面临的能效挑战越来越严峻。要迎接这些挑战,可采用有源PFC 预调节器、准谐振反激式主DC/DC 转换器和独立的反激式待机转换器相结合的解决方案。在解决方案中, 选用安森美推出的PFC控制器NCP1*、英飞凌推出的准谐振反激式控制器ICE2QS02G、集成功率芯片ICE3BR4765J 和CoolMOS 开关管,可使设计具有良好的性价比。

关键字:开关电源  液晶电视  ICE2QS02G 编辑:探路者 引用地址:基于ICE2QS02G的液晶电视开关电源设计

上一篇:大功率稳压逆变电源的设计与制作
下一篇:折中选择输入电容纹波电流的线压范围

推荐阅读最新更新时间:2023-10-18 16:07

开关电源电路设计秘笈之轻松估计负载瞬态响应
本篇电源设计小贴士介绍了一种通过了解控制带宽和输出滤波器电容特性估算 电源瞬态响应 的简单方法。该方法充分利用了这样一个事实,即所有电路的闭环输出阻抗均为开环输出阻抗除以1加环路增益,或简单表述为: 图10.1以图形方式说明了上述关系,两种阻抗均以dB-Ω或20*log 为单位。在开环曲线上的低频率区域内,输出阻抗取决于输出电感阻抗和电感。当输出电容和电感发生谐振时,形成峰值。高频阻抗取决于电容输出滤波器特性、等效串联电阻(ESR)以及等效串联电感(ESL)。将开环阻抗除以 1加环路增益即可计算得出闭环输出阻抗。 由于该图形以对数表示,即简单的减法,因此在增益较高的低频率区域阻抗会大大降低;在增益较少的高频率区域闭环和开环
[电源管理]
<font color='red'>开关电源</font>电路设计秘笈之轻松估计负载瞬态响应
ADIADP244136V1A效率94%降压DC电源稳压方案
ADI 公司的ADP2441是36V /1A同步降压DC/DC电源稳压器,负载电流高达1A,输入电压4.5V-36V,输出电压从0.6V到0.9VxVIN,精度±1%,开关频率从300 kHz到1 MHz,效率高达94%,关断电流小于15uA,主要用在POL,分布式电源系统,工业控制电源和DC转换器.本文介绍了ADP2441主要特性,方框图,多种典型应用电路以及ADP2441评估板主要特性,电路图,材料清单和PCB元件布局图. The ADP2441 is a constant frequency, current mode control, synchronous, step-down dc-to-dc regulator tha
[电源管理]
图文解说:开关电源测试步骤
一、开关电源工作原理 1、开关电源是一种高频开关式的能量变换电子电路,常作为设备的电源供应器,常见变换分类有:AC-DC、DC-DC、DC-AC 等。   2、开关电源原理框图   (1) 市电进入电源后,首先经过是最前级的EMI 滤波电路部份,EMI 滤波的主要作用是滤除外界电网的高频脉冲对电源的干扰,同时还有减少开关电源本身对外界的电磁干扰。实际上它是利电感和电容的特性,使频率为50Hz 左右的交流电可以顺利通过滤波器,而高于50Hz 以上的高频干扰杂波将被滤波器滤除。 (2) 经过EMI 滤波,所得到较为平整的正弦波交流电被送入前级整流电路进行整流,整流工作都由全桥式整流二极管来担任。经过全桥式整
[电源管理]
图文解说:<font color='red'>开关电源</font>测试步骤
带后备电池的多路隔离输出开关电源
    随着社会经济的高速发展,人类对于电能的需求量越来越大。在化石能源等不可再生、能源日益短缺的情况下,越来越多的国家意识到节约能源与开发可再生能源的重要性。因此近几年,高压直流输电、太阳能发电等高新技术得到快速发展。而这些高新技术的发展都离不开性能日益提升的大功率可控器件,如IGBT。这些大功率器件往往功率较大、集成度高、价格昂贵,且需要有适合其工作的驱动电路。由于这些大功率器件在工作中往往是多只组合构成桥式电路工作,每只功率器件都是独立的,因此其驱动电路所需电压必须由多路隔离的直流电压提供,而这种多路隔离的直流电压输出一般都由开关电源实现。开关电源一般由市电为其供电,只要市电正常,开关电源就可工作,并能输出稳定的多路隔离直流
[电源管理]
带后备电池的多路隔离输出<font color='red'>开关电源</font>
一款高效反激式开关电源的设计以及性能测试
由于传统开关电源存在对电网造成谐波污染以及工作效率低等问题,因此目前国内外各类开关电源研究机构正努力寻求运用各种高新技术改善电源性能。.其中,在开关电源设计中通过功率因数校正PFC(Power Factor Correction)技术降低电磁污染及利用同步整流技术提高效率的研发途径尤其受到重视。 本文设计并制作了一种高效低电磁污染的开关电源样机。测试结果表明,该电源具有优良的动态性能、较高的功率因数和工作效率,且控制简单,故具有一定的实际应用价值。 开关电源设计方案 开关电源的结构如图1所示,它主要由220V交流电压整流及滤波电路、功率因数校正电路、DC/DC变换器三大部分组成。 220
[测试测量]
一款高效反激式<font color='red'>开关电源</font>的设计以及性能测试
开关电源原理与设计(连载69)
2-1-1-16.开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两
[电源管理]
如何提高低成本开关电源的效率?
  低电流开关稳压器IC通常使用达灵顿管作为输出开关。在这种情况下,电源转换效率可以借由两个便宜的元器件得到提高。   为使之成为可能,芯片上应当有一个针对驱动器晶体管Q1集电极的单独引脚(图1)。在启动时,D1针对Q1的集电极电流形成一条通路。此后,D1和C1形成一个电流累加整流器,增加Q1的集电极电压和电流,从而降低闭合开关Q2上的电压降。        图1:为了实现用两个元器件提升电源转换效率,芯片上应有针对驱动器晶体管Q1集电极的单独引脚。   该电路的另一优点是能在输入电压较低的情况下工作。由于驱动器集电极上的电压有所上升,电路可支持更宽的输入范围。   C1的值取决于开关频率。一般情况下,数值范围为47nF~150
[电源管理]
如何提高低成本<font color='red'>开关电源</font>的效率?
必看!论电源中安规电容的重要性
不知道大家有没有过这样的经历:小时候很好奇,什么东西都想碰,去摸插座电源,结果被电到了?小编小时候就做过这样的事情,因为年纪小无知还好奇,被电到了和家长说反而还挨骂。看到这几年触摸插板结果触电而亡的新闻就觉得很揪心。现在想想就小编这个好奇心能活到现在真的不容易,还让父母担心。 电源里有不同的电子元件,打开开关电源可以看到里面有个黄色盒型电子元件和蓝色圆形电子元件,这两个电子元件就是安规电容,黄色盒型的是安规X电容,蓝色圆形的是安规Y电容。那么它们在开关电源里是做什么用的呢?那么我们先来搞清楚什么是安规电容。 安规电容是指外部电源断开后会迅速放电,人触摸不会有触电感,而且安规电容失效后,不会导致电击,不会伤害人体。而普通电容
[嵌入式]
必看!论电源中安规电容的重要性
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved