为了充分利用电池电量,当每节电池达到3.0V的终止电压时,用户希望能够在电池的运行周期内对其剩余电量进行精确度为±1%的电池电量监测。此外,他们还希望去除耗时的充放电周期,以更新使用3S2P锂离子电池组(三节锂离子电池串联以及两节锂离子电池并联)的笔记本电脑的电池容量,每节电池的容量为2200mAh。
解决方案
当前用于电池电量监测的最常见技术就是库仑计数算法,或对流入和流出电池的电流进行积分的算法。对于刚刚充满电量的新电池而言,这种方法非常有效。但是,随着电池老化和自放电,这种方法就显得不那么有效了。没有办法测量自放电速度,因此通常用一个预定义的自放电速度公式来对其进行校正。这种方法不是很精确,因为电池的自放电速度各不相同,而且一个模型不能适用于所有的电池。
库仑计数算法的另一个弊端在于只有在完全充电以后立即进行完全放电,才能对电池的总容量进行更新,而便携式设备的用户很少对电池进行完全放电,因此,实际电量在完成更新之前可能会被大大降低。
第二种方法是利用电池电压与充电状态(Stafus of charging)之间的相互关系进行电池电量监测。这种方法看起来比较直观,但是只有当未对电池接入负载电流时,电池电压才与SOC或电池电量具有很高的关联性。这是因为如果接入了一个负载电流,那么电池内部阻抗两端就会有一个压降。温度每下降100℃,电池阻抗就会提高1.5倍。此外,当电池老化时,会出现与阻抗有关的重大问题。一个典型的锂离子电池在完成100次充放电周期以后,其直流阻抗会增加一倍。最后,该电池对阶跃负载变化会有一个非常大的时间常数瞬态响应。在接入负载以后,电池电压会随着时间的变化以不同的速度逐渐下降,并在去除负载以后逐渐上升。仅仅在其完成15%的标准的充放电周期(500个)以后,对于全新电池而言,非常有效的电压算法就可能会引起50%的误差。
基于阻抗跟踪技术的电池电量监测
通过上述叙述可以看出,无论是库仑计数算法还是基于电池电压相关算法的电池电量监测,要想实现1%的电池容量估计都是不可能的。因此,TI开发出了一种全新电池电量监测算法——阻抗跟踪技术,该技术综合了基于库仑计数算法和电压相关算法的优点。
当笔记本电脑处于睡眠或关机模式时,其电池及电池组处于没有负载的空闲状态。这时在电池开路电压(OCV)和SOC之间存在非常精确的相关性,该相关性给出了SOC确切的开始位置。由于所有自放电活动都在电池的OCV降低过程中反应出来,所以无需进行自放电校正。在便携式设备开启之前,精确的SOC通常取决于对电池OCV的测量。当设备处于活动模式而且接入了负载,便开始执行基于电流积分的库仑计数算法。库仑计数器测量通过的电荷量并进行积分,从而不间断地算出SOC值。
图1显示了电池总容量测量的更新。电池总容量是通过电池在充放电前后电压的变化足够小、处于全空闲状态时,在P1和P2处的两个OCV读数计算得出的。在P1处电池完成放电之前,SOC值可由下式得出:
SOC1=Q1/Qmax
电池完成放电且通过电荷为DQ时,SOC值可由下式得出:
SOC2=Q2/Qmax
两个等式相减,得出:
其中,△Q=Q1-Q2
式中,通过分别在P1处和P2处测量电池的OCV,可由电池OCV以及SOC之间的相关性得出SOC1和SOC2。从该等式可以看出,无需经历完全的充放电周期即可确定电池总容量。
在接入了外部负载之后,可以通过测量出在负载条件下的电池电压差来测量每节电池的阻抗。压差除以接入的负载电流,就可以得出低频电池阻抗。
此外,当采用描述温度效应的模型进行测量工作时,阻抗的大小与温度高低有关。有了该阻抗信息,就可以对终止电压进行预测,从而可以精确计算所有负载或温度下的剩余电量。有了该电池阻抗信号,通过在固件中使用一种电压仿真方法就可以确定剩余电量。该仿真方法先计算出当前的SOCstart值,然后计算出在负载电流相同且SOC值持续降低的情况下未来的电池电压值。当仿真电池电压低于电池终止电压(典型值为3.0V/每节)时,获取与此电压对应的SOC值并记做SOCfinal。剩余电量RM可由下式得出。
RM=(SOCstart-SOCfinal)×Qmax
图2说明了由基于实时更新电池阻抗的电量监测计bq20z80如何精确地预测电池的剩余电量。对剩余电量预测的误差不到1%,该误差率会贯穿于整个电池组的使用寿命。
结论
基于阻抗跟踪技术的电池电量监测计综合了基于库仑计数算法与基于电压相关算法的优点,从而实现了最佳的电池电量监测精确度。通过测量空闲状态下的OCV,可以得出精确的SOC值。由于所有自放电活动都在电池的OCV降低过程中反应出来,所以无需进行自放电校正。当设备的运行模式为活动模式且接入了负载,便开始执行基于电流积分的库仑计数算法。通过实时测量实现对电池阻抗的更新,而且通过阻抗跟踪技术还可以省去耗时的电池自动记忆周期。因此,在整个电池使用周期内都实现了1%的电池电量监测精度。
上一篇:阀控式铅酸蓄电池VRLA的维护与监测
下一篇:LM2717型双降压直流/直流变换器的原理及应用
推荐阅读最新更新时间:2023-10-18 16:08
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC