高频机型UPS的几个“致命弱点”论值得商榷(二)

最新更新时间:2011-12-18来源: 互联网关键字:UPS  高频机UPS  工频机UPS 手机看文章 扫描二维码
随时随地手机看文章

  还有的说什么零地电压可导致后面的数字机器出现误码或丢码。这又是一个基本概念问题。众所周知,UPS供出的交流电压是给包括计算机在内的电子设备内部电源的,这个内部电源的任务就是将交流电压变换成内部电路所需的直流电压,而且电子设备的内部电路只和本机的电源打交道,所以本机电源的质量好坏才直接影响着本机电路的工作质量。用电机器的误码不误码和UPS没有任何关系!因为那是用电设备机内电源的事情。所以在这里零地电压不是干扰源。

    (2)传递干扰的通道:零地电压是如何传递到负载机器上去的

    退一万步说,假设零地电压是干扰源,现在看一看它如何能加到负载上去。图9给出了零地电压的等效电路。在这里取出UPS中的一相电压UA作为例子。将零线上的分布电阻用集中参数RN代替,负载电阻是RL,于是负载和零线就是跨接在电源UA两端的两个串联的阻抗。

    两个阻抗上的电压之和就是电源电压,即:

    UL +UN=U                                              (5)

    两个电阻上流过同一个电流Ia,由于零线敷设完毕后,零线电阻就是个不变的定值,就是电阻负载,对外不会产生任何影响。当然会有人说:流过零线的还有谐波电流,如图中虚线箭头所示。是的,尽管有谐波电流流过,尽管也会使零线上压降有所变化,一方面与220V相比是微乎其微,另一方面它的流向如虚线箭头所示,也不会返回头去倒流到负载。零线上电压降的变化对负载没有任何影响,零线对地的电位就好像浮在水上的船,负载就好像坐在船上的人,无论水平面如何让波动,水涨船高,坐在船上的人本身不会受影响。

    还会有的人提出:既然RLRN是分压关系,会不会由于RN上分压太多而影响负载的正常工作呢?一般说任何负载都允许输入电压变化±10%,而220V±10%就是±22V

图9  零地电压的等效电路

    在零线上出现22V的压降几乎是不可想象的,如果真有这么大的零线压降那肯定是出问题了。因为在UPS机柜范围内的零线汇流排上,正常情况下一般绝不会出现3V以上的压降,一般都小于1V。还有一种情况就是:由于UPS输出端的低通滤波器特性不好,有一部分高次谐波流入负载。其实这也无妨,负载机器的内置电源输入端都接有滤波器,首先将高次谐波拦截,第二级就是整流滤波器进行拦截,第三级就是直流变换器。这三道大门可将任何高次谐波甚至干扰关在门外或给予消灭。正因为负载机器内部电源具有如此强大的功能,莫须有的给零地电压扣上“干扰负载”的帽子,实在是无中生有。

    就是说,没有任何一条通路能把零地电压和干扰加到负载上去。更何况零地电压不是干扰源。当然,空间干扰就是另一回事了,不属于这里讨论的范畴。

    (四)高频机型UPS在市电断电后,电池放电时系统效率降低2%

    有的地方说得非常具体,看来是做了实地测量。遗憾的是他把部分高频机UPS当成了全部,再说这个结论还存在漏洞。下面分几种情况介绍。

    1. 单相小功率UPS情况

    图10示出了一般小功率高频机UPS原理电路图。因为高频机UPS的特点之一就是取消了输出隔离变压器,所以能取消这个占机器绝大重量的变压器就是因为采用了半桥逆变器。但半桥逆变器的工作需要两个直流电源,而对于功率不大的高频机UPS的两个直流电源尤其是采用两组电池就显得太累赘了。于是就采用了Boost升压电路技术。如图中储能电感L,电子开关S,隔离二极管VD2,虚拟电源电容器C1和C2就构成了升压电子变压器。在由市电供电时,整流器ZL1和充电器为电池组GB充电,整流器ZL2为主电路供电,由于220V交流只能给出约300V的直流电压,而半桥逆变器则需要两个至少310V以上的直流电压。所以Boost升压电路就在电容C1和C2上造成两个约400V的串联连接的虚拟直流电源。

图10  一般单相小功率高频机UPS原理电路图

    当市电断电时,就由电池组GB放电。一般在10kVA 以下或30kVA以下容量情况下,电池组GB的电压比较低,比如3节12V,4节12V…甚至10节12V。总之,电压远达不到半桥逆变器工作的电平。因此还必须仍由Boost升压电路将其升高到两个400V。就是说,市电尽管停止了供电,这里工作的不像工频机UPS那样仅由逆变器工作,Boost升压电路还必须接着工作。这样看来高频机就比工频机多了一个工作环节,所以就比工频机逆变器多消耗能量,就算效率就降低了2%。

    但有的问题提出者顾此失彼,只顾比较电子电路部分并高兴找到了高频机UPS的“软肋”(所谓致命弱点),岂不知却忘记了工频机UPS的输出隔离变压器也在工作着,如图11(a)所示。该变压器上消耗的功率远不是2%就可以打发的。笔者曾对对4台进口100kVA UPS的输出变压器满载时的测量发现,100kVA变压器铁心外表温度达90C,这绝不是2kW功率就可以造成的现象。(但愿这不是普遍现象)。总之,实测发现,小功率高频机UPS的系统效率仍然还高一些。

图11  工频机与高频机UPS输出电路比较

    2.中大功率情况

    高频机型UPS在中大功率的情况下就更不是问题提出者说的那样低2%的事情了。一般在中大功率的高频机结构UPS中,虚拟电源已远不能满足大电流输出的要求,这时的电容器只能作为负载突变时补充电池内阻过大而给不出前沿电流的问题。后面的大电流还是要靠大容量的电池组提供,如图12所示。不论是图12(a)所示的具有两个直流电源的高频型UPS还是图12(b)所示的只具有一个直流电源的高频机型UPS,几乎都至少采用了32节12V电池串联或电压相近的电池串联方案。这些电池组的额定电压都远高于交流220V的峰值电压310V。所以在市电断电以后,充电环节也停止了工作,只靠电池本身的容量来维持设定的后备时间,一直到电池电压降低到逆变器关机电压电平。这时的关机电压电平一般在320332V,这一点与工频机型UPS逆变器的工作一模一样,所以这2%就不存在了。真正存在的倒是工频机型UPS的输出变压器。这个变压器占去了工频机UPS近三分之二的空间和2%以上的功耗。如果非要说“致命”的话,应该到工频机型UPS中去找。实际上有些人就是小题大做,工频机型UPS尽管功耗大,但这么多年下来了,也一直工作的很好,更没人说这是个致命的问题。为何今天反而把比工频机型节能的UPS说成是“致命”的呢。甚至在大庭广众之下公然大呼其高频机型UPS有多少多少个“致命弱点”,实在不够慎重。不知为何对适应当今节能减排的国策,又符合体积小、重量轻、技术新和价格低等数据中心要求的产品带有如此大的成见。

(c)具有一个直流电源的工频机结构UPS全桥逆变器输出原理电路图

    图12  高频机结构UPS和工频机结构UPS逆变器输出原理电路图

    (五)高频机结构UPS的外接变压器会损坏负载

    1.为何要外接隔离变压器

    取消输出隔离变压器是高频机型UPS的一大特点,也是一大优点,因为它降低了系统功耗、体积、重量和价格。可有的人非要把拿掉的这个变压器再加上去,当然这里有的用户也有这样的要求,不过用户的要求大都是受了某些厂家的误导所致。据说为了降低零地电压。尽管如此,有的问题提出者还不放心,说是“零地电压仍然偏高,仍然继续危害用电设备的安全运行”。就算按照某处的意思暂且给高频机型UPS加上外加变压器,如图13(a)所示,看一看这个论断如何。可以比较一下图13(a)和(b)两个电路。现在两个逆变器的输出都接入了变压器,可以看出两个逆变器的工作方式都是脉宽调制,调制频率也都差不多,也可以说一样。所以从逆变器功率管的工作来说是没有区别的;为了向负载送出正弦波电压,就必须加低通滤波器,将调制时的高频成分滤掉,只允许50Hz的正弦波通过,从图中也可看出其二者都有这个滤波环节,只是高频机型UPS的谐波滤波器在变压器之前,而工频机型UPS的谐波滤波器在变压器之后,就是说现在二者的工作环节不但有,而且一样。所不同的是滤波环节与变压器的位置。这样一来就可以看出,在高频机型UPS中,高次谐波在变压器之前就被滤掉了,通过零线回到了直流BUS的负端,即高频机型UPS的高次谐波根本没进入变压器初级绕组。而工频机型UPS的高次谐波是在变压器后面才被滤掉的,换言之是在靠近负载端被滤掉的。这就出现了一个问题:按照某君的说法:靠负载近的高次谐波形成的零地电压加不到负载上去,也不影响负载的工作;反而是离负载远的高次谐波形成的零地电压一定会加到负载上去,继续危害负载的安全运行。同样的电路原理反而出来两种不同的结果,不知此君是分析出来的还是测量出来的这种结果。好象从理论上就说不通。

图13  两类UPS都有变压器时的谐波路径图

    有的地方说高频机型UPS外加变压器后还会带来使设备烧毁的隐患。还说高频机型UPS“一旦因故出现输出停电或闪断故障”,外接隔离变压器就会出现“反激型的瞬态尖峰电压”,足以烧毁IT设备。当输入突然恢复供电时,又会导致并机系统“严重过载”,等等。令人不解的是,一样的供电环节,一样的功能,就是工频机型换成了高频机型,只一字之差,二者的结果就不一样了。难道说工频机型UPS就不会出现输出停电或闪断故障?即使出了,它的变压器也不会产生“反激型的瞬态尖峰电压”?当输入突然恢复供电时,工频机型UPS也不会导致并机系统“严重过载!难道说外接隔离变压器的破坏力是高频机型UPS固有的吗?话又说回来,这个高频机型UPS的外加变压器是某处硬给加上去的(供应商可从来就没这个打算),加上后又分析出这么多“潜在”的“隐患”。即加上变压器是他正确,分析出了问题是你加上去的不对,绕来绕去都是他的理。对高频机型UPS来说根本就没有外加变压器的必要,首先,如前所说零地电压就不是干扰源,再说也没传递零地电压的通道。影响用电设备的是常摸干扰,共模干扰是如何进入用电设备的?图14示出了常模干扰和共模干扰原理图,若使干扰电压起作用,就必须有能量,这里的能量就是电流与电压相乘的功率,即干扰源与被干扰对象(用电设备)必须形成电流回路。从图14可以看出,常模干扰电流是火线与零线之间的电压形成的,可以随着电源与负载形成电流回路。而共模电压(在这里是零地电压)则是零线与地线之间的电压,根本与用电设备形不成电流的闭环回路,不论是电压还是电流都没有到达用电设备的通道,又何谈干扰?又何谈“危害这些用电设备的安全运行”!

图14  常模干扰和共模干扰原理图

    令人不解的是,同样的变压器接在高频机型UPS逆变器的输出就有那么多的“隐患”,而接在工频机型UPS逆变器的输出就具有了更优异的抗“冲击性”负载的能力。实际上这是电抗器或扼流圈的特性。暂且不说概念上的误解,就算把这个变压器当成电感性吧,就是这个电感性在某种说法下:用在高频机型UPS逆变器的输出端就会出现损坏用电设备的“反激型的瞬态尖峰电压”,而用在了工频机型UPS逆变器的输出就具有了更优异的抗“冲击性”负载的能力。不仅如此,还成了“跨接在UPS与整流滤波型非线性负载之间的‘50Hz滤波器’,它将大幅度提高UPS承担具有高峰比的冲击性电流的能力”。看来这个变压器智能化到极点了!不过,笔者倒是遇到了输出接变压器烧毁和电池的例子,而且是烧的工频机。如下例所示。

    例:北京某制造厂就因600kVA UPS供电方案如图15所示。这里用5台150kVA UPS做4+1冗余并联,输出端是5个UPS输出变压器次级绕组并联。负载中还有一台300kVA变压器,可说是层层设防。但在电池模式供电时由于300kVA负载变压器开关S合闸,因负载变压器的瞬时短路而导致了UPS部分烧毁和电池组起火,一举烧毁了70余节100AH电池,5个变压器没起到任何所谓“缓冲”和“滤波器”的作用。

    值得一提的是有的把变压器说成可以抗干扰,这又是一个基本概念问题。什么器件可以抗干扰?具有基本电路知识的人都知道,只有非线性器件或惯性器件才能抗干扰。变压器是非线性铁心器材工作在线性区,正因如此,它才使得传输波形不失真。变压器的绕制关键就是力求漏感越小越好,零漏感的最好。一个好的变压器就几乎是一个全线性的装置,线性电路的的特点就是不失真地传输波形——输入是什么波形输出就照样复制,这可以用双踪示波器来检测,一看便知,无需争论。漏感大的变压器因有电感是低质变压器,甚至是不合格产品,因为它降低了电源输出电压的动态性能。有人拿着不合格产品负面性能造成的现象当成正事来说就不合适了。

图15   某半导体厂4+1冗余并联连接输出接一变压器的原理图

    当然,专门的工频机型UPS输出变压器为了从PWM解调出正弦波,有意识地在输出变压器绕制时有意留一点漏感,目的是利用此漏感和变压器后面的电容器构成LC滤波器。但这个漏感很小,以不影响UPS的输出动态性能为度。

图16  两类UPS输出与负载连接原理图

    前面高频机型UPS的变压器说的一无是处,其目的就是为了推出工频机型UPS输出变压器的所谓高性能。有的口口声声说利用这个UPS的输出变压器来抗干扰,试问抗的是什么干扰?是UPS输出变压器前面来的干扰还是负载端来的干扰?抗所谓干扰的目的是什么,是为了保护后面的负载还是保护UPS的逆变器?要知道UPS逆变器的输出电压是非常好的正弦波,没有干扰;那只有“抗”来自负载的干扰。但负载端来的所谓干扰是负载的正常工作造成的。因为以往的负载设备多为输入功率因数较低的整流滤波负载,对UPS的输出电压正弦波造成了一定程度的破坏,一般称之为“干扰”,而这个所谓的“干扰”就是负载工作后破坏电压“结果”。这个被破坏电压的结果靠负载端最大,从UPS输出端到负载的距离越远、导线越细、经过的触点越多,这个失真就越大;相反,这个失真在UPS输出端最小,这并不是什么变压器能抗干扰的结果,而是它本来的面目。如图16的上下两个图(a)和(b)所示,如果两个同样功率UPS带同样的负载,其UPS输出端都是很好的正弦波,到了负载端就变成了失真波形,如图16两个图(a)和(b)所示。这是因为负载的整流滤波电路向负载索取的不是正弦波电流,而是平均或有效值数倍的脉冲电流,这个电流必然在传输线上与传输线的分布阻抗形成压降,由于脉冲电流只在正弦电压波的峰值附近形成,所以这个压降只在峰值附近形成,到达负载的电压波峰值必须从UO峰值上减去沿路压降值,所以才形成削顶的失真。UPS机柜输出端电压UO的波形取决于UPS内阻的大小,所以负载端的失真大和UPS端的失真小和变压器没关系,而且也不是什么干扰,更不是什么变压器抗干扰的结果。而且不论是工频机型UPS还是高频机型UPS,在这方面的结果都是一样的。至于在UPS输出带负载之间电缆上的“毛刺”也是由负载的非线性破坏电压的波形和传输所致,也不是什么所谓的干扰。

图17   UPS输出电压到达负载的情况与到负载距离的关系示意图

    由于在UPS输出端口这个干扰幅度已微乎其微,不用抗。抗干扰的目的不外乎要保护什么。在这里和这个输出变压器打交道的只有两个目标:前面的逆变器和后面的用电设备。前面已经知道,这个所谓干扰是负载正常工作后留下的结果,属正常工作范围,所以用不着保护;前面的逆变器跟前都有电容器,而且这里的输出电压正弦波很好,没有所谓“干扰”,也用不着变压器无的放矢。所以这里所大力宣扬的变压器抗干扰是“虚晃一枪”,是“无的放矢”。但如果不知道这个原理,也会被这“虚晃一枪”所震撼!

    总之,在贬低高频机型UPS的市场上有的宣传者利用所谓“分析”的手段或不合格产品的性能制造出一些所谓“潜在”和“隐患”之类的悬念,吓唬不知真相者;把同样东西的“优点”都贴在工频机型UPS的脸上,将所谓不利的一面都栽在高频机型UPS的头上。想借此将工频机型UPS的市场寿命延长一些时日。作为商家这样做虽然不好,但为了生计也情有可原。但作为学术讨论就有失公允了。尤其是在不了解机器性能的情况下也充当内行,莫须有地制造悬念。当然,这其中不乏是理论水平和基本概念问题,但无论如何误导用户是不应该的。更不应该和当今国家节能减排的政策相违背。■

关键字:UPS  高频机UPS  工频机UPS 编辑:冰封 引用地址:高频机型UPS的几个“致命弱点”论值得商榷(二)

上一篇:高频机型UPS的几个“致命弱点”论值得商榷(一)
下一篇:数字电源实现系统低功耗设计

推荐阅读最新更新时间:2023-10-18 16:14

选购UPS时应注意的问题
  由于数字通讯网络的应用以及计算机与广播电视设备之间的技术兼容,电力保护系统的配套使用就成为了能否为关键设备提供绝对安全保护的重要因素。根据多年的市场经验,在选购UPS电源时,应注意以下几个问题:   1.如何确定UPS功率?   许多用户在确定UPS功率时,往往与负载的功率相同或略大。由于资金的困扰和对UPS不甚了解,往往从目前机房设备的容量去选择UPS的功率。实际上这样选择是不明智的。建议从以下几个方面来确定所选择的UPS功率:   (1)UPS作为基础供电设备,最重要的是可靠性。一般而言,功率大些的UPS的MTBF(平均无故障时间)要远远高于小功率UPS的MTBF。因此,从可靠性考虑应选择功率大一些的UPS。   (2)高性
[电源管理]
基于DSP在线式UPS不间断电源控制系统的研究
   引言   随着计算机的普及和信息处理技术的广泛应用,不间断电源UPS在关键负载连接至公共电网方面扮演着重要角色。它们旨在为处于任何正常或异常实用电源条件下的负载提供清洁、持续的电源。德州仪器(TI)TMS320F28335 DSP为在线UPS设计提供增强的、经济高效的解决方案,可以高速执行多种控制算法,从而使实现高采样速率成为可能。   本文实现了基于TMS320F28335的不间断电源控制系统的设计,该系统能够在单芯片中实现在线UPS的多控制环路,从而提高集成度并降低系统成本。数字控制还为每个控制器带来可编程性、抗噪声干扰和避免冗余电压及电流传感器的使用等优点。DSP 可编程性意味着可以使用增强的算法更新系统以
[嵌入式]
延长UPS电源寿命的四大方法
数据中心备用 电源 是保证数据中心正常运行时间和可用性的关键设施。在发生停电事故后,UPS电源可以自动将电源开关从公用电源上转移到备用电源上。但是,对于大多数UPS来说,都有一个相对不太可靠但却很昂贵的部件——蓄电池。 “简单地说,蓄电池有三个特点:规模大、造价高、消耗性强,”N.J FranklinLakesPTS数据中心解决方案工程公司总裁PeteSacco说,“你能做的只是想方设法去延长蓄电池的使用寿命,事实上也就增加了数据中心的可用性。” 这里介绍数据中心设备经理们拓展其数据中心UPS蓄电池使用寿命的四项措施。 为数据中心选购规模适中的UPS蓄电池 在大多数数据中心中,UPS都可以在20分钟内将
[电源管理]
单进单出系列UPS电源的具体安装要求
单进单出系列UPS电源的具体安装要求: 1.要求UPS供电为单相三线制。(零、火、地)市电波动在220V±%以内,零地电压小于V。 2.UPS前级及负载回路不能带漏电保护开关。 3.UPS输入零线不能过断路器或保险。(如需要断零线,则零火双断。) 4.UPS输入零线与输出零线(即UPS负载零线)要分开,不能混接。 5.UPS输入火线不能与其它用电设备的火线共接一个断路器下口。 6.输入输出断路器额定电压。 7.输入零、火线、地线用多股铜软线。 8.客户如为UPS外配长延时电池,(建议用户将电池与UPS主机并排放置)电池与主机之间连线长度不超过5米。 9.建议用户负载配电采用分级
[电源管理]
基于DSP在线式UPS不间断电源控制系统的研究
引言   随着计算机的普及和信息处理技术的广泛应用,不间断电源UPS在关键负载连接至公共电网方面扮演着重要角色。它们旨在为处于任何正常或异常实用电源条件下的负载提供清洁、持续的电源。德州仪器(TI)TMS320F28335 DSP为在线UPS设计提供增强的、经济高效的解决方案,可以高速执行多种控制算法,从而使实现高采样速率成为可能。   本文实现了基于TMS320F28335的不间断电源控制系统的设计,该系统能够在单芯片中实现在线UPS的多控制环路,从而提高集成度并降低系统成本。数字控制还为每个控制器带来可编程性、抗噪声干扰和避免冗余电压及电流传感器的使用等优点。DSP 可编程性意味着可以使用增强的算法更新系统以提高可靠性
[电源管理]
基于DSP在线式<font color='red'>UPS</font>不间断电源控制系统的研究
集中式UPS管理系统效率增加方法浅析
  由于网络的普及,UPS与网络联机不像从前困难,使得IT管理者和IT员工能直接集中管理所有UPS。本文将探讨如何通过系统管理所有UPS,以及集中管理UPS的优点。    UPS集中管理的优点   为了保护设备运作不断电,企业纷纷投资UPS解决方案以确保商业运作不中断。然而简易安装UPS并不是最终解决方案,管理者需知如何管理控制这些系统,确保他们正常运作。而集中式UPS管理系统的优点就是能立即了解UPS的状况,包括UPS容量与位置、负载、电瓶是否需要充电以及UPS的运作状况。如果能通过一个程序完全收集所有信息,并以简易操作的图形接口显示,另加上警告功能,那么管理者只要通过这个集中管理程序,就能够轻易管理上百台甚至上千台网络U
[嵌入式]
UPS定义及其作用
  一 定义   UPS( Uninterruptable Power System ),即不间断电源,是一种含有储能装置,以整流器、逆变器为主要组成部分的稳压稳频的交流电源。主要利用电池等储能装置在停电时给计算机/服务器、存储设备、网络设备等计算机、通信网络系统或工业控制系统、需要持续运转的工业设备等提供不间断的电力供应,是保障现代工控自动化的重要“助手”。当市电输入正常时,UPS 将市电稳压后供应给负载使用,此时的UPS就是一台交流式电稳压器,同时它还向储能装置如电池组充电;当市电中断( 事故停电 )时, UPS 立即将储能装置(如电池组或飞轮储能系统)的电能,通过逆变转换的方法向负载继续供应交流电,使负载维持正常工作并
[电源管理]
DSP控制器构成的大功率UPS并联系统设计
  1、引言   本文介绍一种基于TI公司的TMS320C240 DSP控制器构成的大功率并联型UPS同步控制方案。与电网的同步、并联系统中各台UPS间的同步,成为并联UPS系统控制的关键。UPS并联系统中的核心部分是精度很高的锁相环,模拟锁相环是一门成熟的技术,以它独特的优良性能在许多领域得到了广泛地应用。但随着数字技术的发展,UPS的全数字化控制是大势所趋,因此,锁相环也逐渐过渡为数字化,数字DSP控制锁相环相对于模拟锁相环实现起来更方便,同时用软件代替硬件实现,还可以结合系统的其他功能统一设计,节省成本。    2、TMS320C240 DSP控制器介绍   TMS320C240是美国TI公司专为数字电机控制运用
[电源管理]
DSP控制器构成的大功率<font color='red'>UPS</font>并联系统设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved