微型无刷直流电机的无位置传感器控制

最新更新时间:2011-12-22来源: 互联网关键字:无刷  直流电机  无位置传感器 手机看文章 扫描二维码
随时随地手机看文章

0 引言

    在一些应用场合要求使用的电机体积小、效率高、转速高,微型永磁无刷直流电机能够较好地满足要求。因为电机体积较小,安装位置传感器困难,所以微型无刷直流电机的无位置传感器控制就显得尤为必要。

    无刷直流电机的无位置传感器控制的难点在于转子位置信号的检测,目前国内外研究人员提出了诸多方法,其中反电动势法最为简单、可靠,应用范围最广泛。普遍采用的控制方案为基于DSP的控制和基于专用集成电路的控制等,但是其价格高、体积大,不利于用在微型电机控制器中。本文介绍基于C8051F330单片机、检测反电动势法的无位置传感器无刷直流电机的控制器,系统结构简单,体积超小型,价格低廉,运行性能良好。

1 无传感器无刷直流电机的控制方式

    实现无刷直流电机电子换相及PWM控制的逆变器主电路如图1a所示。采用两两通电方式,即每一个瞬间有两个功率管导通,每隔60°电角度换相1次,每一功率管导通120°电角度。功率管的导通顺序是:V6V1→V1V2→V2V3→V3V4→V4V5→V5V6。

    在方波无刷直流电机中,定子绕组的反电动势波形(即气隙磁通波形)为正负对称的梯形波,如图1b所示。从图中可以看出当检测到不通电相绕组的反电动势为零时,以此作为起点滞后30°电角度,即为最佳换相时刻。因此只要测出各相反电动势的过零点就可获得三相电机所需的6个关键位置信号,进而实现定子绕组的正确换流。电动机绕组中性点0一般未引出,直接测定绕组反电动势相值比较困难,而便于测量的是三相定子绕组对地的端电压。端电压过中点(直流电源电压的一半)与反电动势过零点在时间上是重合的,所以寻找反电动势的过零点后30°电角度即相当于寻找端电压的过中点后30°电角度。

2 控制系统设计

2.1 硬件电路设计

    系统的硬件电路图如图2所示,以C8051F330单片机、逆变桥电路、端电压检测电路、稳压电路等组成。本电路设计得非常简洁,各种元器件都使用小型的贴片封装,非常适合对成本和体积都比较敏感的微型电机控制器。

    逆变桥电路中上桥臂为P型MOSFET器件FDS6679,下桥臂为N型MOSFET器件M4410B,均为低电压驱动器件。FDS66 79通过一个NPN型三极管驱动,而M441 0B由C8051F330的P1口直接驱动(P1口设置成推挽输出)。PWM控制模式定为:PWM仅应用于半桥的下端MOSFET,同时换流的上端(对角线)MOSFET仅起换相通断控制。

    电源电压和电流的检测:当UV相通电,在PWM开通期间检测U相的端电压Uu,由于MOSFET的通态电压很小(小于0.1V),端电压uu可以近似看作是电源电压UD;在下桥臂源极和电源地之间串接采样电阻,通过P0.4口检测电阻电压得到电流值,输入信号先经过内部可编程增益放大器放大,再作A/D转换。

2.2 软件设计

    软件主要有初始化程序、电机起动程序、端电压检测及换相程序、电压和电流保护程序、运行控制程序等组成。共有四个中断:PWM中断、ADC 中断、T1中断、T2中断。其中T2中断实现电机起动程序,PWM中断在PWM开通期间启动ADC中断,在ADC中断中进行端电压检测,当检测到反电动势过零点时启动T1中断完成换相。主程序如图3所示。

2.2.1G8051 F330的初始化

    由于C8051F330单片机与8051单片机在内部资源上有差异,所以它们的初始化有所不同。主要有两点不同:对外引脚的交叉开关的配置;对系统时钟源的配置。考虑到用户自己写初始化程序很繁琐,Silicon Labs公司推出了C8051F单片机初始化代码生成程序软件Config2Version 1.30。用户只要在图形化的界面上用鼠标点击选择,就可以方便地生成C8051F330的初始化程序。大大加快了用户的开发速度。

2.2.2 PWM波输出控制

    C8051F330的可编程计数器阵列(PCA)由一个专用的16位计数器/定时器和3个16位捕捉/比较模块组成,恰好可以实现3路8位PWM或16位PWM功能。PCA的16位计数器/定时器的高字节PCAOH和低字节PCAOL决定PWM波的频率,通过改变捕捉/比较模块的高字节PCAOCPHn和低字节PCAOCPLn就可以改变PWM波的占空比。

2.2.3 端电压检测及换相

反电动势换相信号检测:在PWM开通期间启动ADC,检测处于不通电相绕组的端电压,其值等于电源电压的一半时为反电动势过零点信号。要考虑:a.ADC检测时刻应与PWM同步,并选择PWM开通时间的中点为佳,以避开开关状态的瞬态电压噪声。b.在软件中应舍弃换相后的最初几个反电动势采样点,因为换相后绕组电流不会立即为零,要经过一个续流过程才下降为零。程序如图4所示。使用定时器0记录连续监测到两个端电压过零点的时间,除以2即为30°电角度的时间,把此时间装载到定时器1中,定时器1经过30°电角度时间触发中断,调用换相子程序进行电子换相。

3 实验结果及结论

    实验样机采用长沙方圆模型厂生产的无传感器无刷直流电机,型号为1208436,额定参数为,转速:4100r/V,2对极,最大电流:4A,内阻:0.59Ω,空载电流:0.3A。实验平台如图5所示。

    当电源电压为10V、PWM占空比为20%、空载时,端电压波形图如图6所示。从图中看出,换相时间为0.6ms左右,端电压波形是较好的梯形波。根据电机额定参数计算换相时间为0.609ms(60°电角度),可见换相时间比较准确。通过实验证明,采用上述控制技术,电机系统起动平稳,无振动和失步现象,同时系统具有结构简单、小型化、低成本、运行可靠、调速性能良好的优点。■

关键字:无刷  直流电机  无位置传感器 编辑:冰封 引用地址:微型无刷直流电机的无位置传感器控制

上一篇:基于FPGA的AMLCD控制器的设计
下一篇:一种灯光控制用户界面的设计和实现

推荐阅读最新更新时间:2023-10-18 16:15

无刷直流电机驱动控制器的S0PC技术研究
  无刷直流电机具有无电刷和换相火花,体积小,低噪声等诸多优点,广泛应用在当今的控制系统中。目前对无刷直流电机的控制主要由单片机和DSP实现。但是其外围电路复杂,对系统的稳定性和可靠性有较大的影响。近年来,基于可编程门阵列(FPGA)的硬件设计技术已经成为一种全新的设计思想。与专用集成电路(ASIC)不同的是,FPGA本身只是标准的单元阵列,没有一般集成电路所具有的功能,但用户可以根据需要,通过专门的布局布线工具对其内部进行重新编程,在最短的时间内设计出自己专用的集成电路,从而提高产品的竞争力。由于它以纯硬件的方式进行并行处理,而且不占用CPU的资源,所以可以使系统达到很高的性能。本文用纯硬件的方式设计实现了无刷直流电机驱动控制器
[工业控制]
摩托车用直流无刷起动磁电机及驱动电路设计
1 引 言 目前电起动摩托车上起动电机和磁电机是2台独立的电机。起动电机为有刷永磁直流电动机,工作转速高,需经减速机构和超越离合器与发动机曲轴相连。磁电机飞轮永磁转子与发动机曲轴直接相连,起到发电和给发动机点火系统提供点火触发信号的作用。发动机结构复杂,超越离合器打滑时会严重影响摩托车的起动特性;起动电机通过电刷换向,电刷磨损严重,需要经常维护。 直流无刷起动磁电机是将直流无刷起动电机与磁电机合二为一。它省掉了减速机构和超越离合器,简化了发动机结构,提高了运行可靠性。使用它可轻易地将脚踏摩托车改装成电起动摩托车。但摩托车的价格越来越低,这就要降低直流无刷起动磁电机成本,电机磁瓦应选用铁氧体磁钢,而不采用钕铁硼材料。 2 总体结构
[嵌入式]
无刷电机的工作原理及优势是什么
无刷电机的工作原理依旧可以想象一个圆柱体,不过这次不是小圆棒在中间转,而是一个块儿吸铁石在中间转,柱壁不在是吸铁石的两个磁极,而是刚才通了电的“扇叶”。这样只要一通电,柱壁因为电磁有了磁极,和中间的吸铁石产生互斥力,然后吸铁石疯狂转,电能就此转化为动能。它与有刷电机最大的区别就是,就不用那俩电刷通电了,因为我们可以直接给柱壁通电。 这样好处就很明显了,因为没有那个电刷摩擦了,所以速度也更快了,损耗也减小了,输出功率更大了,电机的也寿命长了,还不产生火花呐,这对于一些在易燃位置的电器来说简直就是福音。 无刷电机优点: (1)无电刷、低干扰 无刷电机去除了电刷,最直接的变化就是没有了有刷电机运转时产生的电火花,这样就极大减少了
[嵌入式]
<font color='red'>无刷</font>电机的工作原理及优势是什么
有刷直流电机PWM调速器原理
很多场合我们都需要用到直流电机的无级调速,如图1所示为有刷直流电机PWM调速器的实物图。 图1:有刷直流电机PWM调速器 该电路工作电压范围5V--30V,输出电流3A;该电路的PWM是由应用广泛的555定时器做的。 图2:有刷直流电机PWM调速器原理图 工作过程: ①右旋旋钮,开关闭合,5V经过R2,D2和RP1(1-2)给C3充电,C3电压上升到触发电平后触发翻转; ②触发翻转后7脚放电端对地导通,C3通过RP1(2-3)、D3和R4对地放电,C3电压下降到复位电平后触发翻转; ③触发翻转后7脚放电端对地阻断,C3再次充电,回到第1步的动作,周而复始; ④调节旋钮,既是在调节充放电时间达到调节占空比的目的,而振荡频率(
[嵌入式]
有刷<font color='red'>直流电机</font>PWM调速器原理
高精度无刷直流电机伺服控制系统的设计与仿真
    在伺服传动系统中,无刷直流电动机(BLDCM)是一种新型的无级变速电动机,其结构简单可靠、维护方便、运行效率高及惯量小和控制精度高等优点,广泛应用于伺服控制精密数控机床、加工中心、机器人等领域。随着BLDCM应用领域的推广,对系统的动静态性能、鲁捧性、控制精度等要求越来越高。     本文以三相四极无刷直流电动机为研究对象,结合PID控制和模糊控制各自的优势,设计了一套基于TI公司的C2000系列TMS320F2812 DSP为核心的全数字永磁无刷直流电动机的闭环调速系统,以期满足BLDCM伺服控制系统的高精度、快速性、稳定性和鲁捧性的要求。 1 总体方案设计     系统没计采用三相四极无刷直流电动机PWM控制方案,逆变桥
[电源管理]
高精度<font color='red'>无刷</font><font color='red'>直流电机</font>伺服控制系统的设计与仿真
交流伺服电机和无刷直流伺服电机的性能区别
“伺服”一词源于希腊语“奴隶”的意思。“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。 伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。伺服电动机又称执行电动机,在自动控制系统中用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。 伺服电机的分类 伺服电机分为交流伺服和直流伺服两大类。 交流伺服电机的基本构造与交流感应电动机(异步电机)相似。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的
[嵌入式]
交流伺服电机和<font color='red'>无刷</font>直流伺服电机的性能区别
基于单片机的数字PID实现直流电机调速(智能车)
现在做很多的智能车,都需要对车速进行控制.或匀速或变速,在调速算法中,PID的经典永垂不朽. 其实,简单的51单片机尚能轻易的实现平滑良好的调速,更不用说性能优良的单片机.然而,要做到最好,是需要很高的专业水平和动手能力.但是,工程上能达到我们的目标即可. 抱着 够用就好 的思想,我们来开始我们的调速旅程: 所谓的PID是肯定基于一个闭环系统而言的,什么是闭环系统呢,我简单的介绍一下: 看上面的这个系统,就不是一个闭环系统,而是一个开环系统.再看下面的这个就是闭环系统: 上图这个系统就是典型的闭环系统.大家也许看出来了, 开环 系统,就是系统没有反馈
[单片机]
用ST72141实现无刷直流电机的控制
引 言 1 概 述   ST72141是ST公司专门用于同步电机控制的一款单片机,特别适合3相无刷直流电机的控制。无刷直流电机可用于工业控制、汽车电子产品、电冰箱、空调、压缩机和风扇等产品。无刷直流电机的优点是效率高、工作噪声低、体积小、可靠性好和寿命长。   ST72141是ST7微控制器家族产品中的一员。它包括A/D转换和SPI接口,有专门用于无刷直流电机控制的片内外设,可选择带传感器模式和不带传感器模式。   ST7片内的电机控制电路可看成是一个脉宽调制多路复用器。它有6路输出和1个用在无刷直流电机不带传感器控制时的反电动势零点检测电路。 ST72141的电机控制外设有4个主要的部分: ◇ 去
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved