三电平Buck-Boost双向变换器的仿真研究

最新更新时间:2011-12-23来源: 互联网关键字:变换器  双向  三电平  降压-升压变换器 手机看文章 扫描二维码
随时随地手机看文章
 双向DC/DC变换器具有双向能量流动能力,广泛应用于多电飞机高压直流配电系统[1][2]、UPS系统[3]、太阳能发电系统[4]、蓄电池充/放电系统,因此对于双向DC/DC变换器的研究也越来越广泛和深入。

  1981年Akira Nabae教授提出三电平逆变器[8],因其低开关管电压应力受到人们广泛兴趣;1992年Pinheiro教授针对三电平这一优点提出三电平零电压开关PWM直流变换器(Three-Level Zero-Voltage-Switching PWM Converter, TL ZVS PWM变换器)[5];2002年阮新波教授应用两种基本三电平单元,推导出所有基本直流变换器的三电平拓扑[6]。但已有三电平直流变换器还存在以下不足(1)变换器能量单向流动,(2)变换器实现软开关复杂[7]。本文给出了输入输出共地式与输入输出不共地式两种三Buck-Boost双向变换器(Three-Level Buck-Boost Bi- directional Converter,简称TL Buck-Boost BDC)电路拓扑,及其交错互补控制方案;进行稳态工作原理分析,归纳出变换器的优缺点,指出在电感电流交错变化模式下所有开关管自动ZVS,为今后进一步研究打下理论基础。

1 输入输出共地式TL Buck-Boost BDC稳态原理 

  图1(a)给出了输入输出共地式TL Buck-Boost BDC,其中Cblock为隔直电容,稳态时,其电压为1端口电压U1的一半。Q1、Q2、Q3、Q4是四只开关管,D1、D2 、D3 、D4分别是其体二极管,Lf是滤波电感,Cf1、Cf2是滤波电容。

  在分析工作原理之前,作如下假设:

  1) 所有开关管、二极管、电感、电容均为理想器件;
  2) Cblock可以看成电压为U1/2的电压源;
  3) 两端口电容足够大,等效为电压源U1、U2。

  在该变换器中,控制方案的合理选取十分关键,文中方案选取基于以下考虑:若让Q1、Q4同时导通,则U1、Q1、Cblock、Q4形成环路,因U1 Ucblock,则回路中会出现大电流,不可取;同理,Q2、Q3也不能同时导通。所以该变换器中四个开关管采取如下的交错互补驱动信号: Q1、Q4驱动信号互补,Q2、Q3驱动信号互补; Q1和Q2交错工作,驱动信号相差180°相角;Q3和Q4交错工作,驱动信号相差180°相角。

1.1 稳态工作原理

  稳态工作时,不同占空比(D<0.5 ,D=0.5,D>0.5),变换器工作模式有所不同。在同一占空比情况下,电感电流iLf分别为恒大于零,交错变化或恒小于零时,变换器的工作情况也各不相同。因此

根据占空比D与电感电流iLf的不同,变换器共有9种工作模式,如表1所示。这里选取D>0.5(D<0.5 ,D=0.5的工作情况与D>0.5的分析方法和结论类似,因篇幅限制,文中不再赘述)下的三种典型模式进行分析,主要原理波形如图2所示。电感电流iLf过零时,一个开关周期内变换器共有8种开关模态,如图3所示。电感电流恒大于零和恒小于零时,变换器的工作模态分别是电感电流过零时8种工作模态中的四种工作模态,见图2。


1.1.1 电感电流恒大于零的工作模态分析

  1)开关模态1[t0,t2][图3(2)]

  t0时刻之前,电感电流iLf从A向U2方向(定义为正向电感电流方向)流过Q2、Cblock、D4。t0时刻,Q4关断,Q1开通,iLf流过Q1、Q2。AB间电压为U1,Q3、Q4上的电压为U1/2。iLf线性增加。

  2)开关模态2[t2,t4] [图3(3)]
  
  t2时刻,Q2关断,Q3开通,iLf流过Q1、Cblock、D3,Cblock充电,AB间电压为U1/2,Q2、Q4上的电压为U1/2。电感iLf电流线性减少。

  3)开关模态3[t4,t6] [图3(6)]

  t4时刻,Q3关断,Q2开通,iLf流过Q1、Q2, AB间电压为U1,Q3、Q4上的电压为U1/2。电感iLf电流线性增加。该开关模态与开关模态1相同。

  4)开关模态4[t6,t8] [图3(7)]

  t6时刻,Q1关断,Q4开通。iLf流过D4、Cblock、Q2, Cblock放电,AB间电压为U1/2,Q1、Q3上的电压为U1/2。iLf线性减少。
  
  t8时刻,Q4关断,Q1开通,开始下一个周期。

  可见,电感电流恒大于零时,能量从1端口流向2端口,变换器工作在buck方式;输出电压U2=DU1,各个开关管承受的电压应力为U1/2,为对应二电平变换器的一半。

1.1.2 电感电流恒小于零的工作模态分析

  电感电流恒小于零时,与电感电流恒大于零类似,拓扑一个周期也有四个开关模态,从图3的(1)→(4)→(5)→(8)→(1)。能量从2端口流向1端口,变换器工作在boost方式;输出电压U2=DU1,各个开关管承受的电压应力也为U1/2。

1.1.3 电感电流交替变化的工作模态分析

  1)开关模态1 [t0,t1] [图3(1)]

  t0时刻之前, iLf反向流过D2、Cblock 、Q4。t0时刻,Q4关断,iLf经D1、D2续流,Q1零电压开通,AB间电压为U1,Q3、Q4上承受的电压为U1/2。iLf线性减小,见图2。

图2 D>0.5下的主要原理波形


  2) 开关模态2 [t1,t2] [图3(2)] 

  t1时刻,该反向iLf下降为零,并经Q1、Q2正向增加,D1、D2关断。AB间电压仍为U1,Q3、Q4上电压为U1/2。

  3)开关模态3[t2,t3] [图3(3)]

  t2时刻,Q2关断,iLf流过Q1、Cblock、D3,Q3零电压开通。Cblock充电,AB间电压为U1/2,Q2和Q4上电压为U1/2。正向iLf线性减小。

  4)开关模态4[t3,t4] [图3(4)]

  t3时刻,该正向iLf下降为零,并经D1、Cblock、Q3反向增加,D3关断。Cblock放电,AB间电压为U1/2,Q2和Q4上电压为U1/2。

  5)开关模态5[t4,t5] [图3(5)]

  t4时刻,关断Q3, D1、D2续流,Q2零电压开通,AB间电压为U1,Q3和Q4上的电压为U1/2。反向iLf线性减少。该开关模态与开关模态1相同。

  6)开关模态6[t5,t6] [图3(6)]

  t5时刻,该反向iLf下降为零,并经Q1、Q2正向增加,D1、D2自然关断。AB间电压为U1,Q3、Q4上的电压为U1/2。该开关模态与开关模态2相同。

  7)开关模态7[t6,t7] [图3(7)]

  t6时刻,Q1关断,iLf流过D4、Cblock、Q2,Q4零电压开通,Cblock放电,AB间电压为U1/2,Q1、Q3上的电压为U1/2。正向iLf线性减小。

  8)开关模态8[t7,t8] [图3(8)]

  t7时刻,该正向iLf下降为零,并经D2、Cblock和Q4反向增加,D4关断。Cblock充电,AB间电压为U1/2,Q1和Q3上的电压为U1/2。iLf线性增加。

  t8时刻,Q4关断,Q1开通,开始下一个周期。

  由上分析可知,电感电流交替变化工作时,所有开关管均零电压开关,二极管自然关断,没有反向恢复电流。

1.2 基本关系

  稳态时,由电感电压伏秒积平衡,可得到UCblock=U1/2,与原理分析前的假设2)一致。启动时,Cblock有一个建压的过程,Q1、Q4出现瞬时过压,也即存在启动期间开关管应力不均问题,须在今后研究中寻找合理的解决方案。

  U2和U1的电压关系:
  (1)


  电感电流iLf的脉动为:

  其中,Ts=1/fs是开关周期,fs是开关频率;Ton为开关管的导通时间,Toff为开关管的截止时间。D=Ton/Ts为占空比;△ILf、ILfmin和ILfmax分别为的电感电流脉动值、电感电流最小值和最大值。

2 输入输出不共地式TL Buck- Boost BDC稳态原理

  图1(b)给出了输入/输出不共地式Buck-Boost TL BDC。Q1、Q2、Q3、Q4是四只开关管,D1、D2 、D3 、D4是它们的体二极管,Lf是滤波电感,Cb1、Cb2是均压电容,Cf2是滤波电容。各开关管给与输入输出共地式TL Buck–Boost BDC相同的驱动信号驱动,其工作方式相似,这里不再赘述。与输入输出共地式 Buck-Boost BDC相比,不存在启动问题,但也有以下不足:

  1)Cb1,Cb2分压不均,导致开关管应力不均。

  2)输入输出不共地,抗干扰能力差。


3 仿 真 

  为了验证本文所提控制方案的可行性,本节利用Saber对电路进行仿真分析。仿真所用参数如下:

  ·iLf恒大于零:U1=270VDC,D=0.8,I2=6A,fs=50kHz,Lf=350uH,Cf1=350uF;
  ·iLf交错变化:U1=270VDC,D=0.8,I2=6A,fs=50kHz,Lf=35uH,Cf1=350uF;
  ·iLf恒小于零:U2=200VDC,D=0.8,I1=2.5A,fs=50kHz,Lf=350uH,Cf2=350uF;

  由仿真波形可以得到以下结论:

  1)比较图4(a~c)中电感电流:iLf平均值可以正负改变,变换器为双向变换器;
  2)图4(a~c)中隔直电容电压Vcblock稳定在U1/2,与理论分析一致;
  3)图4(a~c)中Vds(Q1)、Vds(Q3)波形可知,开关管承受电压为U1/2,为二电平Buck-Boost BDC[12]的一半,与理论分析一致;
  4)图4(a~e)中VAB频率为驱动信号Vgs的一倍,且相对于二电平Buck-Boost BDC变换器,VAB脉动从U1-0减小为U1-U1/2(D<0.5下为U1/2-0),脉动值降低一半,这有利减小滤波器的体积和重量,提高变换器的动态性能;
  5)分析图4(a~c)中iCblock与iLf,电感电流交替变化工作模态下,二极管自然关断,没有反向恢复电流,开关管均为零电压开关;
  6) 交错控制方案使电感电流上升时间与下降时间均分一个周期,相对于非交错控制方案,电感电流纹波最小。如图4(d)、(e)所示,其中实线为 交错控制方案。


4 结 语

  本文提出二种三电平Buck-Boost双向变换器电路拓扑及其交错互补控制方案,详细分析了D>0.5的三种典型工作方式,导出了基本关系,验证了控制方案的可行性,为进一步研究打下理论基础。


参考文献:

[1] Ponstantin P.Louganski. Modeling and analysis of a DC power distribution system in 21th century airlifters [D]. Master of Science thesis. Blacksburg, VA: Department of Electrical and Computer Engineering,Virginia Tech,September 1999
[2] A.Capel, D. O’Sullivan, A. Weinberg,etc. A bi-directional high power cell using large single feedback control with maximum current conduction control(MC3) for space application[A].IEEE PESC[D]1986.684~695
[3] M.Jain,M.Danielle.K Jain.A bi-directional DC-DC converter topology for low power application [J].in:IEEE Transaction on Power Electronics,Vol.15, No 4,july 2000:595-606
[4] Hirofumi Matsuo,Fujio Kurkawa. C converter topology for low power application [J].IEEE Transaction on Power Electronics,Vol.15, No 4,julyNew solar cell power supply system using a Boost type bidirectional DC-DC converter [A] . IEEE PESC.[D].1982.14~19
[5] J.Renes Pinheiro and Ivo Barbi.The three-level ZVS PWM Converter - A new concept in high-voltage dc-dc conversion.[A] IEEE IECON.[D]. 1992.173~178
[6] Xinbo Ruan, Bin Li, and Qianhong Chen.Three - Level Converters—A New Approach for High Voltage and High power DC-to-DC Conversion[A].IEEE PESC.[D]2002.663~668
[7] J.Renes Pinheiro and Ivo Barbi.Wide load range the three-level zvs pwm dc-to-dc converter[A].IEEE PESC.[D]. 1993.171~177
关键字:变换器  双向  三电平  降压-升压变换器 编辑:冰封 引用地址:三电平Buck-Boost双向变换器的仿真研究

上一篇:有源钳位正激变换器的功率损耗分析
下一篇:交错并联的低压大电流DC - DC 变换器设计

推荐阅读最新更新时间:2023-10-18 16:15

基于电感升压开关型变换器的LED驱动电路
一、基本 电路 拓扑与工作原理 基于电感升压 开关 型变换器的LED 驱动 电路广泛应用于 电池 供电的消费类便携 电子 设备的背光 led /' target='_blank' 照明 中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率 开关 MOSFET( VT1)、 控制 电路、升压二极管(VD1 )和输出 电容 器(C0)组成,如图1(a )所示。 图1电感升压变换器基本电路及其工作原理图 在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。 当控制器驱动VT
[模拟电子]
大型车辆内轮差危险区域双向示警系统设计
摘 要:大型车辆由于自身车长,轴距长等特点在转弯过程中前轮与后轮轨迹不重合,形成“内轮差”区域。大型车辆发生的恶性 交通事故 中,由于“内轮差”引发的事故占70%以上。针对大型车辆转弯视觉盲区“内轮差”问题,本设计提出一套大型车辆 内轮差危险区域 双向示警系统的设计方案。整个系统模拟真实车辆转向过程。主控模块采用 STM32 进行控制,通过连接电路、实验调试后,该系统可以模拟真实车辆转向过程,并计算“内轮差”危险区域,进行相关 双向声光示警 ,能够达到预期目标,对有效减少大型车辆“内轮差”事故的发生提供解决方案。 *本项目获得“2020全国大学生集成电路创新创业大赛·创新实践项目组”辽宁省一等奖、东北赛区二等奖、国家级三等奖。
[汽车电子]
大型车辆内轮差危险区域<font color='red'>双向</font>示警系统设计
升压变换器基本电路
升压变换器基本电路 图 升压变换器基本电路 升压变换器是将一个DC输入电压变换成比输入电压高的并经过调整的DC输出电压的电源变换器,其基本电路如图所示。当开关Q1导通时,输入DC电压Vi施加到电感器L的两端,二极管D因反偏而截止,L储存来自输入电源的能量。当开关Q1关断时,L中的储能使D正偏而导通,并将能量传输到输出电容C和负载R中。
[电源管理]
<font color='red'>升压</font><font color='red'>变换器</font>基本电路
双工器为手机和数据终端提供高度双向隔离
  Avago Technologies(安华高科技)公司为工业和消费通信应用领域提供模拟接口零部件,目前已隆重推出第一代4G/LTE Band 7双工器1其2 × 2.5毫米薄膜腔声谐振器(FBAR)为手机和数据终端提供了高度双向隔离的优势。该FBAR双工器有助于制造商生产新兴的4G/LTE 标准手机,优化语音服务质量并延长电池寿命。   该ACMD-6007双工器的最大插入损耗低于2.1分贝,将功率放大器的电流消耗最小化,因而可延长手机电池寿命和通话时间。接收通道内的插入损耗极低,仅为2.5分贝,可提高灵敏度和动态范围,让客户在使用中体验清晰的信号。   ACMD-6007通过将其接收通道内的发射频段以50分贝衰减至最
[模拟电子]
高效率和超宽输入电压范围DC-DC变换器设计
一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。但是有很多的应用期望变换器能够处理更宽的输入电压范围。比如,在一些系统应用中分布式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。 作为一个例子,表1显示在不同铁路系统标准中分布式电压的稳态和瞬态范围。军用车辆设计规范也需要类似的宽输入电压范围,这样可以满足其分布式电压的变化。使用宽输入电压范围DC/DC变换器的另外一个原因是建立一个可以被用于不同直流系统的“通用”产品,对于标称值为12V, 24V
[电源管理]
一种新颖的零电压转换PFC变换器设计
1 引 言   在单相功率因数校正变换器的拓扑结构中,单开关PWM升压变换器因其突出的优越性而在近些年被广泛应用于各类功率电子系统中。而同时,由于开关工作频率不断提高所带来的诸如开关损耗、电磁干扰等问题也日益严重,这些问题严重得影响了变换器工作的可靠性和频率的提高和 。为此,电力电子领域的专家学者们一直在探索各种解决方案,并于近些年先后提出了许多零电压或零电流软开关技术 ,为解决上述问题提供了一条理想途径。   本文提出了一种新颖的有源钳位零电压转换(ZVT)PWM功率因数校正变换器,它采用了有源钳位技术,且电感和电容工作在谐振模式,从而可以获得软开关条件。该变换器可在固定频率下实现主开关管的零电压开关,并且在任何输入电压和负载条
[电源管理]
一种新颖的零电压转换PFC<font color='red'>变换器</font>设计
美国医疗领域人工智能应用行业报告:人工智能与医疗健康双向驱动
近年来,人工智能(AI)发展迅速,从AlphaGo连败人类棋手,到商场里随处可见的智能机器人,人工智能已经从实验室走向了大众,不论是舆论关注度还是相关领域的投资,都在节节增长。 2017年第一季度及第二季度,美国VC投资AI及深度学习领域的资本数量已经达到36亿美元,超过2016年全年的投资额。 更重要的是,人工智能技术也到达到了新的阶段,在工业界、医疗、SaaS、农业等等各行各业的应用都引起了巨大的势能。这其中,应用增长率最高的当属AI在医疗领域的应用。 同时,人工智能和 医疗健康 的结合也是“双向驱动”的。一方面,人工智能的众多技术在医疗方面得到了优秀的商用价值体现;另一方面,创新型的AI技术也给医疗创新带来了新的机会。尤其是
[医疗电子]
雅新能B4000 SST便携式双向户外储能电源获Intertek颁发ETL证书
  近日,Intertek天祥集团(以下简称“Intertek”)向雅新能动力科技有限公司(以下简称“雅新能”)研发的B4000 SST便携式双向户外储能电源产品颁发了基于UL 2743标准的ETL证书,为产品竞逐北美市场添加助力。   颁证仪式在Intertek电子电气事业部深圳分公司举行,雅新能动力科技有限公司副总经理郑庆飞先生,副总经理柳杰先生、产品总监石大明先生和 Intertek电子电气事业部华南区总经理李琼女士、深圳分公司高级经理陈业宾先生等嘉宾出席了此次颁证。 Intertek电子电气事业部华南区总经理李琼女士为雅新能副总经理郑庆飞先生颁发ETL证书 授证仪式现场   
[新能源]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved