多个继电器线圈可由单电源供电,该电源必须大到足以同时驱动所有线圈。另外,这些继电器被密集的排布在很小的区域内,设计时必需考虑线圈的功耗。继电器线圈所需的吸合电压远高于其保持电压。认识到这一点,就有可能设计出一种通过减少线圈驱动电流来节省能耗的电路。本应用笔记讨论一种具有内置节电电路的继电器驱动器件,用于降低整个系统的功耗。
节电设计方法
MAX4822/MAX4824继电器驱动器具有节电特性,可在FET先导通一段时间后降低驱动器电压。最初时输出驱动器为完全饱和导通的FET。经过一段可调延时后,FET上的压降调整为寄存器编程值。该延时可由外部电容设定(图1)。
节电特性能同时降低继电器线圈功耗和电源功耗。该器件的输出驱动器具有ON和OFF两种状态。
ON状态具有两种不同的状态,被称为“启动状态”和“节电状态”。在启动状态时,输出FET完全饱和导通。经过由PSAVE引
脚端电容设定的时延后,器件进入节电状态,此时FET上的压降由控制回路调节。
为了说明节电模式下的节电原理,可以对两种ON模式下的功耗进行比较。假设继电器线圈具有100直流电阻,系统使用5V电源。图2给出了由理想电感和电阻RCOIL组成的继电器线圈模型。
在启动状态,MAX4822/MAX4824输出电阻最大值为5。因此功耗可由下式计算:
ICOIL = 5V/105 = 47.6mA
PCOIL = ICOIL2 * RCOIL = 47.6mA2 * 100 = 0.227W
PDRIVER = ICOIL2 * RDRIVER = 47.6mA2 * 5 = 0.011W
PTOTAL_INIT = 0.238W
节电状态下的功耗分析略有不同。必须首先确定线圈功耗,然后才能确定驱动器功耗。最后将两者简单求和。
在节电状态下,FET输出端电压被调节为电源电压的某一百分值,该电压由内置寄存器设定。这意味着,图2所示电压VDRIVER由内部控制回路调节。回到前面所举例子,假设VDRIVER为50% (尽管MAX4822/MAX4824的允许范围为10%至70%),则线圈的功耗为:
VCOIL = 5V- (50% * 5V) = 2.5V
ICOIL_PS = VCOIL/RCOIL = 2.5V/100 = 0.025A
PCOIL = 2.5V * 25mA = 0.0625W
要计算驱动器的功耗,切记其电流与线圈电流一样:
IDRIVER_PS = 0.025A
VDRIVER = 50% * 5V = 2.5V
PDRIVER = 0.0625W
PTOTAL_PS = 0.125W
SAVINGS = 1 - PTOTAL_PS/PTOTAL_INIT
因此,在这本例中,和启动状态相比节电模式减少了约47.5%的功耗。
以下是计算节电能力的另一个公式。注意:一旦电流已知,即获得了计算节电能力所需的信息。
PTOTAL_PS = VCC * ICOIL_PS
PTOTAL_INIT = VCC * IDRIVER_INIT
SAVINGS = 1 - ICOIL_PS/IDRIVER_INIT
该等式解释了节电模式为何能节电:电源电压保持不变,但从电源吸取的电流减小了。
可以很容易的创建一个表格来说明MAX4822/MAX4824各设定值可能的节电效果。在该表格中,VCC = 5V,RDRIVER = 5,RCOIL = 100,与前文的例子相同。
可以注意到,节电能力随着驱动器设定值增加而升高。然而,请务必注意对于最高设定值,线圈上的压降仅有1.5V,可能不足以使继电器保持在ON位置。
结论
MAX4822/MAX4824继电器驱动器的节电特性可有效降低单稳态继电器ON状态的功耗。在本文的实例中,总耗电量减小了47.5%。测试表明节电量范围可达5.5%到68.5%,具体数值取决于所使用的继电器类型。该节电特性还
有助于降低继电器驱动电源的尺寸和成本,是一种实现小型化、廉价系统的方法。
上一篇:BTN7970在直流电机驱动系统中的应用
下一篇:利用开关模式降压转换驱动器降低功耗并提高照
推荐阅读最新更新时间:2023-10-18 16:21
- 热门资源推荐
- 热门放大器推荐
- 电网络分析与综合 (吴宁)
- 电子电路识图、应用与检测 (韩雪涛)
- 高等电力网络分析 (张伯明,严正著)
- 开关电源维修从入门到精通 第3版 (刘建清)
An error occurred.
Sorry, the page you are looking for is currently unavailable.
Please try again later.
If you are the system administrator of this resource then you should check the error log for details.
Faithfully yours, OpenResty.
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况