RCC变压器设计及与反激电路的区别

最新更新时间:2012-01-13来源: 互联网关键字:RCC变压器  反激电路 手机看文章 扫描二维码
随时随地手机看文章

 RCC 电路根据功率管不同,分为两种,一种是用三极管制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个电流控制的电流源,即若其基极电流为 Ib,则其极电极电流即为此 IB 值乘以一个放大倍数。而 MOS 属电压控制型电流源,即允许流过的最大集电极电流是由 GS 极的电压值决定的,相应的,三极管做成的 RCC电路即是通过控制其基极电流来控制最大集电极电流,即原边峰值电流,来调节输出能量大小,即调节输出电压,而 MOS 管是通过调节 GS 极之间的电压,来控制其原边峰值电流。

  


 

  请看上图,是一个典型的用 MOS 管做的 RCC 电路。下面我根据自己的理解来分析一下此电路的工作过程。

  1.启动。当开启电源后,高压通过 RST,经过 MOS 的 GS 极,再经过 RS,注入基极电流,因为 MOS 的 GS 极之间,有结电容,因此 GS 极电压升高,GS 导通,RS 的上侧会对地产生一个电压,此电压通过 RF,给 Q1 基极注入电流。因 MOS正在导通中,所以 NS2 的同名端感兴出一个正电压来,这个电压通过 RL2,D2,RZCD,CZCD,再到 Q1 极电极,因 RS 给 Q1 已经注入基极电流,Q1 导通,

  2.将 VG 电压拉下,MOS 关闭。MOS 关闭,电压反激, NS2 同名端电压被拉到 0,即为地电压,因 RCD 上端为地电压,所以此时 Q1 的极电极电压为负,便快速的给 MOS 的 GS 极的结电容放电。加速了 MOS 的关闭。同时反激能量通过 NS1,传给负载,于是次级建立起输出电压,次级控制电路亦开始起作用。当变压器储存能量放完后,NS2 两端电压消失,CO2 已经储能,其上端会有一个电压,此电压通过 NS2 绕组,RZCD,CZCD,Q1 集电极,使得 Q1 上电压上升,即又给 GS 加上一个电压。于是又开始起振。

  3、以上便是 RCC 电路的启动过程,再说一下其稳压过程,在一定的输入电压下,一定的输出负载下,其光耦电流应该是一个恒定值,光敏三极管的上端是由电容 CO2 维持的一个恒定电压,此电压通过光敏三极管,RA,给 Q1 基极注入电流。Q1 的基极电流,决定了流过其极电极的电流。假如输入电压不变,MOS 在导通时候,RCD 上端(即NS2 同名端-),此时此点电压值为 VIN.NS2/NP+C02,只要输入电压值不变,导通时此点电压值即是这么多,不会变.而 Q1 上端的电压,是由流过 Q1 的电流决定,其电压等于 RCD 上端电压,减去 RL2,RCD,D2,RZCD,CZCD 的压降,当副边的负载变轻时候,流过光耦电流变大,即注入基极电流变大,极电极电流变大,以上四个元件的压降也变大,所以 Q1 是的电压变小,于是原边峰值电流变上,减小能量输入,达到电压稳定.当原边输入电压升高的时候,NS2 同名端电压升高,此时若光耦电流不变,则 Q1 的电压会上升,能量会增加,输出电压升高,此时光耦电流就会变大,进而形成一系列自动调节.从而调节原边峰值电流,使输出电压保持稳定.

  通过以上分析,我们不难看出 RCC 电路与反激电路的区别,我归结如下.

  1.RCC电路的频率是变化的,面反激电路的频率是固定的,当负载变重时,RCC 电路的频率变小,周期变长.

  2.RCC 电路,始终工作在临界导通模式,其不会出现反激式电流的连续模式,即其原边电流始终都是一个三角波形,而不会出现梯形波,即其原边电流的波形如

  

 3、RCC 电路调节电压输入的方式,就是通过控制原边的峰值电流来实现的,而不是占空比,其占空比是由原边输入电压和输出电压而定。 好了,了解了以上原理,我们就可以来设计这款 RCC 电源变压器。

  设计一款 RCC 变压器,首先要知道的有 1.输入电压,比方说,宽电压 90V 至 264V 交流.2.输出规格,比方说 12V1A,3.所选的磁芯的横截面积.在此我选用了 EF20 磁芯,面积为 30 平方毫米.有了以上条件,根据以上电路,我即来设计此款 RCC 电路变压器.

  1. 根据输入条件,确定输入最低直流电压,因为输入最低的交流电压是 90V,经过整流滤波,再考虑其电压波动,我还是可取输入最低直流电压 VIN 为 90V.

  2. 根据开关管的类型,及其它条件,选取一个低压满载时的最低频率(即最大周期),不妨可取一个最长导通时间,并且自己设定占空比.这一步非常重要.在此,我选定此款电路最大周期为 17US,而导通时间为 8US,关断时间为 9US.

  3. 计算原边峰值电流.首先估算一个效率,然后由输出功率和此估算效率得出输入功率,近而得出输入平均电流,比方说,此款输出 12W,估计效率为 0.8,则输入功率为 15W,则输入平均电流为 15/90,为 0.16A,然后根据占空比,算出峰值电流,公式为 IP=IAVG/D(1-0.5),而IP,IAVG,分别是峰值电流和平均值电流,此处平均电流为 0.16A,D 为 0.47,所以峰值电流为0.69A.根据此值,可设定 RS 值,一般的三极管,VBE 约为 0.6V,所以 RS=0.6/IP,此例约为0.86R,实际可选一个比此电阻略小的值,此电阻阻值便限制了最大的输出功率.综合以上两点,将详细图画下.

  

 

  其实,一个 RCC 变压器的设定,其关键就是这个原边电流波形的设定.而此电流波形可用示波器观察到,将示波器高压端夹在 RS 上端即可.而根据原边平均值电流,计算原边峰值电流的公式。

关键字:RCC变压器  反激电路 编辑:冰封 引用地址:RCC变压器设计及与反激电路的区别

上一篇:变压器的大修、小修项目有那些?
下一篇:工频变压器(低频变压器)设计原理

推荐阅读最新更新时间:2023-10-18 16:21

反激电路功率级模型的研究
  1.引言   随着电子技术的快速发展,开关电源的应用越来越广泛,正向集成化、智能化、绿色化的方向快速发展。在当前的隔离型开关变换器中,反激式开关电源只有一个变压器以及开关器件,具有结构简单、体积小巧等优势,被广泛应用于邮电通信、航空航天、仪器仪表、家用电器等各种领域。由于反激式开关电源的应用的日益广泛化,对电源的精确度以及稳定度等方面提出了更高的要求。因此,对反激式开关电源的控制系统也提出了更高的要求,这就需要对反激式开关电源的电路模型进行进一步的研究,使反激电路控制系统能够设计更加合理。本文将基于一种由UC3843 芯片控制的单端反激电路,与现有的五种反激电路功率级模型进行对比验证,确认一种适合本文设计的单端反激电路的功率级
[电源管理]
<font color='red'>反激电路</font>功率级模型的研究
基于RCC电源变压器设计方法
RCC 电路根据功率管不同,分为两种,一种是用三极管制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个电流控制的电流源,即若其基极电流为 Ib,则其极电极电流即为此 IB 值乘以一个放大倍数。而 MOS 属电压控制型电流源,即允许流过的最大集电极电流是由 GS 极的电压值决定的,相应的,三极管做成的 RCC电路即是通过控制其基极电流来控制最大集电极电流,即原边峰值电流,来调节输出能量大小,即调节输出电压,而 MOS 管是通过调节 GS 极之间的电压,来控制其原边峰值电流。    请看上图,是一个典型的用 MOS 管做的 RCC 电路。下面我根据自己的理解来分析一下此电路的工作过程。1.启
[电源管理]
基于<font color='red'>RCC</font>电源<font color='red'>变压器</font>设计方法
单端反激电路在逆变电源中的应用
  目前,由电池供电的逆变电源一般由两级组成,前级DC/DC电路将电池电压变换成直流约350V电压,后级DC/AC电路将直流350V电压变换为交流220V电压。在这类逆变电源中,前级DC/DC电路一般供电电压较低(12V、24V或48V),输入电流较大, 功率 管导通压降高,损耗大,所以电源效率很难提高。其电路形式有:单端反激、单端正激、双管正激、半桥和全桥等,对于中小功率(约0.5~1kW)而言,单端反激电路具有一定优势,如:电路简单、控制方便、效率高等。本文以24V电池供电,输出350V/1kW为例,对单端反激电路,在逆变电源前级DC/DC电路中的应用做一些探讨。   1 常规单端反激电路结构   常规单端反激电路
[电源管理]
单端<font color='red'>反激电路</font>在逆变电源中的应用
最清晰透彻之RCC 电源变压器设计方法
去年,出于一次偶然,写了三个变压器设计的文章,分别是 反激 , 正激 , 半桥 。没想到反响还不错,尤其以反激变压器那个文章为甚。现在,已经没做电源 RD 了,比原来空闲,那天有个初学者问我,说 RCC 电源变压器算的不准,原来是套用我写的那个反激式的算法,因此我想到,应该再写一点 RCC 电源变压器的设计方法,以使那些电源新手更快的掌握 RCC电源。毕竟 RCC 电源和反激电源还是有些不同的。 RCC 电路根据功率管不同,分为两种,一种是用 三极管 制作,另一种是用 MOS 管制做,电路稍有不同,但原理差不太多。我们知道,三极管是一个 电流 控制的电流源,即若其基极电流为 Ib,则其极电极电流即
[电源管理]
最清晰透彻之<font color='red'>RCC</font> 电源<font color='red'>变压器</font>设计方法
单端反激电路中高频变压器的设计
0   引言 单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。单端反激电源的工作模式有两种,电流连续模式和电流断续模式。前者适用于较小功率,副边二极管没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。这两种工作模式可根据实际需求来选择。 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率的关键因素。随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器。 本文将以单端反激电
[电源管理]
单端<font color='red'>反激电路</font>中高频<font color='red'>变压器</font>的设计
单端反激电路在逆变电源中的应用
  目前,由电池供电的逆变电源一般由两级组成,前级DC/DC电路将电池电压变换成直流约350V电压,后级DC/AC电路将直流350V电压变换为交流220V电压。在这类逆变电源中,前级DC/DC电路一般供电电压较低(12V、24V或48V),输入电流较大, 功率 管导通压降高,损耗大,所以电源效率很难提高。其电路形式有:单端反激、单端正激、双管正激、半桥和全桥等,对于中小功率(约0.5~1kW)而言,单端反激电路具有一定优势,如:电路简单、控制方便、效率高等。本文以24V电池供电,输出350V/1kW为例,对单端反激电路,在逆变电源前级DC/DC电路中的应用做一些探讨。   1 常规单端反激电路结构   常规单端反激电路结构
[电源管理]
单端<font color='red'>反激电路</font>在逆变电源中的应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved