无输出变压器OTL电路的应用

最新更新时间:2012-01-14来源: 互联网关键字:无输出变压器  otl电路 手机看文章 扫描二维码
随时随地手机看文章

 0 引言

  OTL电路,即无输出变压器(Output Trans-former Less)是低频功率放大电路的重点,无论是在电路结构上还是在理论计算上,低频特性较好的0CL和电源利用率较高的BTL电路都与其有很多相似之处。而这3种电路,目前广泛应用于多种视频、音频等设备中。因此深刻理解和细致把握0TL电路的工作原理就有着极其深刻的理论和实际意义。

  l 基本电路

  图1所示为一基本0TL电路,该电路可以看成是由T1和T2两个工作于乙类工作状态的射极跟随器的组合。由于分别选用了NPN型和PNP型三极 管,所以在输入正弦波信号时,两管可以交替工作在正、负半周,故称为0TL互补功率放大电路。由于两管均处于乙类工作状态,所以只有当输入信号大于三极管 门限电压时,才出现基极电流,功放才有信号输出。因此在输入信号正负半周的交替过程中,当输入信号低于门限电压时,两个管子都处于截止状态,输出信号便出 现了失真,这就是交越失真。为消除交越失真,需要给T1、T2设置合适的偏置电路,使两个管子均处于甲乙类状态。为了确保两管静态电流的稳定,故采用具有 稳定正向电压的二极管组成两管基极间的偏置电路。

  


 

  2 OTL电路的特殊性

  2.1 输出耦合电容C1在该电路中兼作负电源

  静态时直流电源给耦合电容充电,由于电路的对称性,

在输出信号负半周,下管导通,上管截止,电源与负载断开,电容放电,代替电源提供能量,在负载上得到负半周信号;在输出信号正半周时。上管导通,下管截止,给电容充电,补充负半周损耗的能量,此时负载上得到正半周信号。

 

  2.2 推动管的偏置电阻兼作负反馈

  在0TL电路中,中点电位的稳定十分重要。为了使中点电位能自动稳定,没有把推动管T3的偏置电阻Rb接在电源上,而是接在了中点电位K上。这样,此电阻既是推动管的偏置电阻,又是负反馈电阻,较好地稳定了中点电位。如:

  

 

  2.3 引入自举升压电容

  当输入信号足够大,正半周峰值时,将使推动管饱和,中点电位趋近于零,输出信号负半周的峰峰值;负半周峰值时,中点电位接近于电源电压,也即输出信号正半周的峰峰值。但根据射极跟随器的工作原理可知,Uk=UA-URC-0.7V< p>

  

 

  所以要增加自举电容和隔离电阻。自举电容C的容量应比较大,使其充放电时间常数远远大于信号周期,保证在整个工作过程中其上的电压始终保持为

, 小阻值的隔离电阻将电源电压与A点电位隔离开。当输入信号负半周时,随着T1的导通,中点电位逐步向VCC上升。由于自举电容两端电压不能突变,A点电位 便被抬高到比VCC还高的电位,使T1管的基极获得高电压,从而使A点的最高值接近VCC,提高了输出信号正半周的幅度,减小了功率失真。

 

  2.4 功率和效率问题

  在0TL电路中经常要遇到这么几个功率:最大不失真输出功率、电源提供的功率、管子最大消耗功率和电路效率,这几个概念之间既有联系又有区别,需要特别注意。

  2.4.1 最大不失真输出功率

  

 2.4.2 电源供给功率

  电源向管子提供的电流如图3所示,其平均值为

即电源功率随输入信号的增大而增大。在极限运用即输出功率最大时,

 

  

 

  

 

  2.4.3 效率

  

 

  2.4.4 管耗

  由能量守恒定律可知,管耗

所以:

 

  (1)当输入信号为零时,管耗也为零;

  (2)当输入信号较小时,管耗也较小,但随输入信号的增加而增加;

  (3)当输入信号快速增大时,由于上式后项比前项增加得快,所以管耗又较小。

  综上所述,当输入信号较大和较小时,管耗均较小。即最大管耗并不发生在电路有最大输出功率时。当电路有最大输出功率时,管耗仅为

  

处,此时Pcm≈0.4Pom。故大家常说的最大管耗Pcm≈0.2Pom,实际是单管最大管耗。绘制输出功率、管耗和电源功率关系图4如示。

 

  

 3 容易出现的问题

  3.1 错误理解几种功率之间的关系

  某些人只是牢牢地记住了教科书上常用计算公式,即

  最大不失真输出功率

  

 

  而没有真正理解其内涵,应用中不加选择地套用公式,从而得出非常荒谬的结论。例如:

  某收音机的功放电路为甲乙类推挽功放电路,电源电压为Vcc=6V,负载为RL=8Ω,输出变压器匝数比n=2.5,求最大输出功率、直流电源提供的功率和管耗。有人这样考虑:

  

 

  可是显然此时的管耗与输出功率之和约为432mW,与电源提供的460mW功率相差甚远,这是为什么呢?这里其实犯了两个错误:(1)电路实际应用两个三极管,求解时却按单管处理了;(2)电路有最大输出功率时,管耗却并非最大。因此正确的答案应为

  

 

  3.2 忽视电路结构的特殊性

  由于该电路使用了一些具有特殊用途的元件,在实际使用过程中会引起一些容易被忽略的问题,使维修陷入困境。例如,目前通用的功放集成块,包括电视机上的场输出集成块,为了减小功耗,提高电路的可靠性,都利用外围元件组成了自举升压电路(又称为泵电源,自举电容又 称为场逆程电容)。随着使用年限的增加,自举电容会出现容量减小、漏电等现象。根据前面的分析我们知道,当自举电容容量下降幅度过大时,其容抗就会变大, 这样开机瞬间的冲击电流就会更多地从功放管T1流过,将其烧坏;而当自举电容漏电时,其容抗变小,这样开机瞬间,中点电位就会远远大于

使 激励管进入饱和状态,功放管T2的基极电位便接近于O,使该管流过较大的电流将其烧毁。即无论自举电容漏电还是容量下降都可能烧毁功放集成块。如果对此不 加判断就更换集成块,则会造成连续损坏集成块的现象。曾有人维修昆仑S511彩电水平一条亮线故障时,按照一般思路在查场输出电容、负载、偏转线圈、电源 电压均正常后,便认为是集成块损坏,然而换上新的集成块开机后,集成块却再次被烧坏。最后经过多次排查才发现场自举电容漏电,换之故障得以排除。

 

  4 结语

  通过上述的分析,希望大家在使用0TL电路时,能够更加熟练掌握该电路的基本组成及其工作原理,深刻理解电路中各元器件的作用,并能正确计算输出功率、管耗、效率等参数。

关键字:无输出变压器  otl电路 编辑:冰封 引用地址:无输出变压器OTL电路的应用

上一篇:工频变压器(低频变压器)设计原理
下一篇:脉冲变压器的磁学

推荐阅读最新更新时间:2023-10-18 16:21

电子管OTL功放原理及电路
OTL是英文Output Transformer Less Amplifier的简称,是一种无输出变压器的功率放大器。 一. OTL 电子 管功放 电路 的特点 普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接 驱动 低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因此在每层之间的分布 电容 也相应增大,使高频扩展受到限制,此外还会造成非线性失真与相位失真
[模拟电子]
电子管OTL功放电路的制作
OTL是英文Output Transformer Less Amplifier的简称,是一种无输出变压器的功率放大器。 一. OTL电子管功放电路的特点 普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非线性失真与相位失真。 为了消
[模拟电子]
电子管<font color='red'>OTL</font>功放<font color='red'>电路</font>的制作
OTL功放电路中的自举电容原理
  图1是一个典型的OTL电路,电路中的C1称为自举电容。它在电路中作用如何?为分析方便将图1简画成图2。     图2的电路中是没有C1的情况,在功放中各级的放大管总是考虑充分利用的,即在输入信号U1的作用下,放大管工作在接近饱和与截止。此时从充分利用输出管的角度出发。希望BG1的集电极饱和此时VCE1=0.5~1V左右,故E点电位VE=-(24-VCE1),因VCE1饱和压降非常小,可忽略不计所以VE=-24V。当U1负半周达峰时,则BG1截止,BG2导通并接近饱和此时VE接近为0伏,那么负载RL得到的高流电压平均峰值为12V。     上述是理想情况下的情形,但实质上图2电路是做不到的,当BG1饱和时,|VE|不可能达
[模拟电子]
10W单声道OTL电路功放的检修
电路如图所示。该机功率放大部分为典型的准互补推挽输出电路。BG5与BG7复合为NPN管,组成推挽的上臂:PNP的。BG6与NPN的BG8复合为PNP管,组成推挽的下臂。R14与C11组成自举电路,用以提高电路的开环增益和正向输出幅度。   R15是BG4的负载电路。为了克服乙类放大特有的交越失真,在BG5与BG6基极之间加入了由两只硅二极管和R16组成的偏置电路,当BG4的集电极电流在它们上面产生压降。这个电压降就是后面BG5与BG7、BG6与BG8的偏置电压,约为1.8V。常温下2只硅二极管压降约1.4V,其余由R16调整获得。由于R16串在偏压回路中。在通电调偏流过程中R16应从0Ω开始起调,不允许突然调大或开路,否则偏
[工业控制]
10W单声道<font color='red'>OTL</font><font color='red'>电路</font>功放的检修
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved