基于能量守恒平均模型的开关变换器建模

最新更新时间:2012-01-15来源: 互联网关键字:传递函数  导通  等效串联电阻 手机看文章 扫描二维码
随时随地手机看文章

  开关变换器是典型的强非线性系统,因此,其电路动态运行解析的分析方法较复杂。为解决工程上遇到的一些开关变换器的设计问题,必须对其进行动态建模。开关变换器的建模方法一般可分为两大类:一类称为数字仿真法;另一类称为解析建模仿真法。前者的准确度和精确度都高,但物理概念不明了,对工程设计指导意义不大。工程上较常用的是解析建模法中的状态空间平均法和电路平均法。电路平均法主要有:

  三端开关器件模型法、时间平均等效电路法、能量守恒法。在前面的各种建模方法中,都没有考虑寄生参数的影响,不利于提高模型精度。而能量守恒平均法考虑了变换器寄生参数的影响且物理意义直观明确,克服了以往技术的不足。

  本文介绍了能量守恒法的原理、建模步骤和仿真分析。最后针对Buck 型DC-DC 变换器利用能量守恒法建立的模型对其进行小信号动态分析。

  1  能量守恒平均模型

  下面以Buck 变换器为例进行说明,Buck 变换器如图1 所示,开关管S 的开关周期Ts ,TON为导通时间,Toff为关断时间,占空比为Du 。图2 是考虑寄生参数的变换器的等效电路,功率开关管等效为理想开关和开通电阻r DC的串联,二极管等效为理想开关、正向压降UF 、正向电阻RF的串联,rL是滤波电感的等效串联电阻,rC是滤波电容的等效串联电阻。对电路作如下假设:所有无源元件为线性不变器件,输入电压源的输出电阻为零,开关器件的输出电容可以忽略不计。

 


 

图1  Buck 变换器主电路



图2  Buck 变换器等效电路

  能量守恒平均原理是以损耗相等为原则,将电路中各寄生参数产生的损耗之和等效为单一寄生参数产生的损耗,从而简化电路结构。运用能量守恒平均原理,将电路中寄生参数折算到电感直流支路中,通过运用替代定理,将经小信号扰动处理的理想开关由受控电压源和受控电流源替代,进而可获得变换器直流模型和小信号模型。

  在Buck 变换器中,当开关晶体管导通时,开关管电流与电感电流iL相等;当开关管关断时,开关管电流为零,则一周内开关管电流有效值可计算为:

 
 


  因此,开关管按有效值的开通功率损耗为:

 


  按平均值计算的功耗为:

 
 


  根据等效原则:

 
 


  代入式(1),可以得到开关管S 的通态电阻的等效平均值为:

 
 


  当开关晶体管S 关断,二极管D 导通时,流过二极管的电流iD =iL ≈IL 。当开关晶体管S 导通,二极管D 关断时,流过二极管的电流iD =0,则一周内二极管电流的有效值为:

 


  因此,二极管正向电阻按有效值的开通功率损耗为:

 
 


  按平均值计算的功耗为:

 
 

  根据等效的原理:

 
 


  代入式(6 ),可以得到二极管D 的正向电阻的等效平均值为:

 
 

   同理可以得到电感L 的等效平均值RL1和电容C的等效平均值RC1为:

 
 


 

图3  考虑寄生参数的Buck 变换器大信号电路模型

  为了简化模型,利用映射规则将寄生参数折算到电感支路中,可以得到:开关晶体管支路中电路rDS1 =rDS/Du移到电感支路中,等效为DrDS ;二极管支路中电阻移到电感支路中,等效为(1-D)RF ;二极管支路内电压移到电感支路中,等效为(1-D)UF 。并且有如下关系式:

 

 

   经过整理后的Buck 变换器大信号电路模型如图3 所示。

  2  直流和小信号模型

  对Buck 变换器大信号等效电路中的各平均变量分离扰动,分解为相应的直流分量与交流小信号分量之和。令:

  
 

  将这些公式代入式(12 )和式(13)得:

 
 


  忽略其中的高阶微小量,分别得到它的直流和小信号模型如图4 、5 所示。

 
 


图4  Buck 变换器的直流模型

 

图5  Buck 变换器的小信号模型

  基于小信号模型,可求出变换器的开环占空比到输出电压传递函数:

 
 

  式中,RE =DrDS +(1-d)RF +rL 。

  3  仿真分析

  为验证所提出模型的准确性,对Buck 变换器进行仿真,参数为Ui =20 。5 V,Uo =10 V,rDS =0。01 Ω,UF =0。45 V,RF =0。03 Ω,L=127 μH,rL =0。11 Ω,C=247 μF,r=5 Ω,开关频率f=50 kHz 。首先利用MATLAB 依据本文模型绘制出变换器传递函数Bode图,再利用仿真软件Saber 通过时域扫频逐个获取变换器在各个频率点处的幅频和相频特性,最后将两种仿真结果进行对比分析。

  图6 对实际Buck 变换器在连续工作模式下的传递函数Gvd (s )Bode 图的实验结果和能量守恒模型仿真结果进行了比较。由图6 可以看出,Gvd (s )Bode 图实验测试结果和能量守恒模型仿真结果相吻合,表明考虑功率开关管的开通电阻、二极管的正向压降和正向电阻、电感的等效串联电阻以及电容的等效串联电阻的能量守恒平均模型能正确地反映Buck 变换器的特性,揭示了考虑寄生参数建模的必要性。

 

图6  实际Buck 变换器Gvd (s )Bode 图试验结果和仿真模型的比较

  4  结 语

  本文基于能量守恒平均原理,通过求取等效平均电阻、电感折算、小信号扰动处理及受控源代换,建立了连续模式下的Buck 变换器模型,给出了传递函数的表达式。仿真表明,能量守恒平均模型能够准确地描述变换器的频率特性。为变换器的稳定性分析提供了理论依据。

关键字:传递函数  导通  等效串联电阻 编辑:探路者 引用地址:基于能量守恒平均模型的开关变换器建模

上一篇:开关电源控制芯片M51995及其应用
下一篇:基于IR1150的功率因数校正电路的研究

推荐阅读最新更新时间:2023-10-18 16:22

一种低损耗的USB 电源开关的设计方案
  1  引言    通用串行总线( Universal Serial Bus) 使PC 机与外部设备的连接变得简单而迅速, 随着计算机以及与USB 相关便携式设备的发展, USB 必将获得更广泛的应用。由于USB 具有即插即用的特点, 在负载出现异常的瞬间, 电源开关会流过数安培的电流, 从而对电路造成损坏。   本文方案中所设计的 USB电源开关采用自举电荷泵, 为N 型功率管提供2 倍于电源的栅驱动电压。在负载出现异常时, 过流保护电路能迅速限制功率管电流,以避免热插拔对电路造成损坏。   2  USB 开关电路方案设计的整体思路   图1 为USB 电源开关方案的整体设计。其中, V IN为电源输入, VO
[嵌入式]
输出电容器的等效串联电阻对滞环控制功率转换器的影响(图
对于经验丰富的电路设计人员来说,他们都知道滞环控制功率转换器的稳定性取决于输出电容器的等效串联电阻(ESR)。假如ESR太小,那么输出电压纹波将会变得较大,并且会对开关信号产生相移。虽然均化和线性化技术在设计与分析固定频率的PWM功率转换器上已有长足的发展,但对滞环控制功率转换器的解析性分析却乏善可陈。由于工作频率是可变的,因此采用非线性控制理论作分析最适合不过。 图1 滞环控制降压转换器 滞环控制功率转换器的运行可如下简述。以图1中的降压转换器为例,当输出电压VOUT下降低于阈值VREF时,那么开关S1便会开启(S2作为互补工作性质)。相反,当VOUT高于VREF时,那S1便会关闭。这种运作方式与可变结构控制系统类似
[电源管理]
输出电容器的<font color='red'>等效</font><font color='red'>串联</font><font color='red'>电阻</font>对滞环控制功率转换器的影响(图
力矩电机传递函数的测定_力矩电机选型
  力矩电机传递函数的测定   力矩电机传递函数是描述电机输入与输出之间关系的数学模型,通常用于电机系统的控制和仿真等应用。下面介绍一种常见的力矩电机传递函数测定方法:   测量电机的速度常数(Kv)和扭矩常数(Kt):在实验室中,通过测试电机在空载条件下的转速和电机在给定电压下的输出扭矩,可以得到电机的速度常数和扭矩常数。一般情况下,Kv和Kt是常数,可以用于描述电机的动态特性。   建立电机数学模型:根据电机的特性,可以建立电机的数学模型。对于力矩电机,其传递函数一般为一阶惯性模型或二阶惯性模型。一阶惯性模型的传递函数为:G(s) = Kt / (Js+D),其中J为负载惯性,D为阻尼系数。二阶惯性模型的传递函数为:G
[嵌入式]
临界模式交错功率因数校正控制IC
  近日,瑞萨科技宣布,推出R2A20116临界导通模式交错功率因数校正(PFC)控制IC。它具有改善所有负载区域高功率转换效率的特点,可用于PC、服务器、数字家电等的PFC电源单元。样品将于今年6月在日本交付。   使用R2A20116有助于减少外部元件数,可以实现一个小型、低噪声、高效率的电源单元。    产品背景   一个设备的电源单元将商业电源的AC(交流电)转换成DC(直流电)。通常,开关电源采用的是电容输入型整流电路,交流输入波形中的电流是脉冲的,而电压则是一个正弦波形,电压波形和电流波形的差异会造成不必要的功耗(电压和电流的乘积),并发生较高的谐波。   功率因数是衡量有效功率比的参数,该参数变小
[新品]
开关型功率变换器的研究与设计
摘要:电压型控制是开关型功率变换器最常见的控制方式。瞬态分析和控制设计的常用方法是频域法,即在频域内研究分析开关电源的瞬态性能。经过实验和工程实践,证明了理论分析的正确性。 关键词:开关型;单环反馈控制;电压型;频域响应;传递函数   1  引言     能源和交通在经济建设中的巨大作用是尽人皆知的。随着社会的高速发展,节能和环保是每一个电力电子技术工作者需要重新认识的课题。作为电力电子技术的核心——电能变换技术也得到了日新月异的发展,已从线性功率变换发展到高频开关型功率变换。高频功率变换使电源产品信息化,节能和环保成为可能,为此,有必要对开关型功率变换器的控制和设计作一些研究和探讨。     为了使
[电源管理]
开关型功率变换器的研究与设计
非同步恒定时间控制器XRP6124
XRP6124,作为一款非同步500ns的恒定导通时间控制器,能在紧凑的封装中实现高达92%的效率,能在高达1MHz的准恒定开关频率下工作,并且支持高达30V的输入电压和低至1.2V的可调输出电压。它专有的控制结构提供了极快的线性调整率和负载瞬态响应性能,无需外部补偿电路,并允许使用具有成本效益的陶瓷电容器。通过精确使能功能和内置软启动,XRP6124的电源设计灵活性得到了进一步加强。同时,输出短路保护也为XRP6124提供了故障安全操作。   具有高可靠性和精确性的电源管理是任何技术系统的关键要件。Exar拥有一系列众多的高性能和行业认可的电源管理解决方案,包括手持设备和照明控制、电源转换以及标准的线性器件。
[模拟电子]
非同步恒定<font color='red'>导</font><font color='red'>通</font>时间控制器XRP6124
ST IH系列IGBT 在软开关电路实现最佳和开关性能
意法半导体的STGWA40IH65DF和STGWA50IH65DF 650V STPOWER™IGBT两款产品能够在软开关电路中实现最佳的导通和开关性能,提高谐振转换器在16kHz-60kHz开关频率范围内的能效。 新IH系列器件属于意法半导体针对软开关应用专门优化的沟栅式场截止(TFS) IGBT产品家族,适用于电磁炉等家电以及软开关应用的半桥电路,现在产品设计人员可以选用这些IGBT,来达到更高的能效等级。除新的IH系列外,意法半导体的软开关用沟栅式场截止(TFS) IGBT系列产品还包括用于电源、焊机和太阳能转换器的HB和HB2系列。 STGWA40IH65DF 和 STGWA50IH65DF 的额定电流分别为
[模拟电子]
ST IH系列IGBT 在软开关电路实现最佳<font color='red'>导</font><font color='red'>通</font>和开关性能
一种低损耗的USB电源开关的设计
  1  引言   通用串行总线( Universal Serial Bus) 使PC 机与外部设备的连接变得简单而迅速, 随着计算机以及与USB 相关便携式设备的发展, USB 必将获得更广泛的应用。由于USB 具有即插即用的特点, 在负载出现异常的瞬间, 电源开关会流过数安培的电流, 从而对电路造成损坏。   本文设计的USB电源开关采用自举电荷泵, 为N 型功率管提供2 倍于电源的栅驱动电压。在负载出现异常时, 过流保护电路能迅速限制功率管电流,以避免热插拔对电路造成损坏。   2  USB 开关电路的整体设计思路   图1 为USB 电源开关的整体设计。其中, V IN为电源输入, VOUT 为USB 的输
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved