非接触感应技术已在汽车(无钥匙进入)、消费电子(自动背光、开关的控制)等领域得到广泛的应用,因其具有耐用性、成本低和结构简单等优势,已逐渐替代各种机械按键、开关。本文采用SMSC生产的CAP1166芯片,实现了非接触式、稳定可靠、结构简单的电容式感应开关设计。
1 非接触式电容感应工作原理
电容式感应主要原理是当被检测物体靠近接近开关工作面时,回路的电容量发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化来控制开与关的作用,从而检测物体的有或无。
电容开关是一对相邻电极,在电极之间有很小的电容。当一个导体接近两个电极时,在电极与导体之间会产生一个耦合电容。在这里,手指就是这个导体。通常电容开关的形式是一边接地的电容,导体的存在增加了开关到地之间的电容。检测是否有手指靠近,也就是检测是否有按键按下,通过检测电容的变化来判断。Cp是感应的电容,它的值随着电极材料上所加导体而改变。总电容感应等效回路如图1所示。
[page] 其中,手和电极之间的电容Cfe约为0.1~10 pF;人体本身的电容Ch约为100~300 pF;PCB板本身的电容Cb约为10~20 pF;人体和P板之间的电容Cbh约为1~20pF。
在检测周期开始,通过一个复位开关把Cx上的电荷全部放掉。然后通过单刀双向开关使Cmod工作在非重迭的周期上。在第一半周,Cmod连接到VDD充电。当Cmod上的电荷以由Cmod值决定的速度充到VDD时,开关断开,然后把开关连接到Cx,Cmod上的电荷转移到Cx中。
图2中,因为Cx的电容值比Cmod大得多,所以Cmod上的电压值在充电的每一周期内只有微小的增加。这个Cmod到Cx上的电荷转换周期重复许多次,以使Cx上积累到一个大的信号,当连接到VDD时,电容Cmod上的电荷为:
Q=CV (1)
不是Cmod上的所有电荷都转移到Cx中。当Cmod上的电压跌落到Cx上的预存电压时,转换便不再进行。为检测感应的电容值是否有改变,可通过Cmod-Cx的充放电方式,把Cx充到固定的阈值VTR,再计算到达这个阈值时的周期数。在任意采样点n,Cx上的电压值为:
当手指靠近时,Cmod变成电极感应电容和手指接近产生的耦合电容之和CF+mod,所以Cx充电到阈值VTH的速度更快,充放电周期数n也就更小:
这样,检测手是否按下就简化成了检测周期数的变化率△n=n-nF+mod,当△n>nTH时手指靠近。
[page]2 电容式非接触开关的设计与实现
2.1 电容式非接触开关的硬件电路设计
实现的电容式非接触按键的硬件电路如图4所示。该设计中,通过SMSC生产的CAP1166芯片循环检测感应电极的状态,以判断是否有物体靠近。该系统的硬件设计非常简单,感应电极不需要附加任何元器件。I/O口CS1~CS6可以连接6个按键感应电极,芯片通过内部硬件配置和软件算法,对感应电极上是否有手靠近进行检测。
非接触按键的检测,必须通过比较器、充电电流源和复位开关组成一个张弛振荡器,以此对按键电极电容充放电,如图5所示。非接触式感应按键的实现过程为:首先设置I/O口的输出驱动模式,开始扫描按键,把按键连接到模拟多通道输入口,使能振荡器。当Cmod上的电压线性增加到阈值时,比较器输出高电平。刷新定时器和PWM的周期数,重设计数值,置完成标志位。当扫描完成,停止PWM,定时器中断服务完成。最后根据电容感应原理,计算出定时器的周期数来判断是否有按键按下。在该设计中,选取Cx值,使充放电周期数n=1000次时,Vx到达VTH。当检测到nF+mod<800,即△n>nTH=200时,认为有键按下。
[page] 调制器的计数器通过一个IIR滤波器,形成一个参考计数即基准,通过选择IIR滤波器的响应函数,可以把瞬时计数的高频噪声屏蔽掉,但温度,湿度以及其他因素导致的缓慢变化可以被追踪下来。如果瞬时计数和基准计数间的差值超过了一定的阈值,固件就会发出接近行为的报告,LED灯亮。下面为实现的C程序代码:
2.3 噪声及外界因素影响处理
2.3.1 噪声
影响有效感应范围和可靠性的最突出因素是噪声。系统的噪声源很多,包括开关信号噪声、供电耦合噪声、参考信号噪声、电磁干扰噪声和射频干扰噪声等。该SMSC生产的CAP1166芯片对噪声有一定的处理,在硬件电路使用非耦合电容、隔离数字地和模拟地,将高频信号远离CAP1166,并选定触发阈值,可以有效降低噪声影响。
2.3.2 温度、湿度以及其他外界因素
感应电容会因温度、湿度等外界因素产生偏移,会导致错误触发。在此可以通过使用IIR型滤波器建立一个基准来自动处理。
3 结语
本文通过对高频噪声、温度、湿度及其他外部因素的处理,实现了稳定、灵敏的非接触电容感应开关的设计,可以广泛地应用在相关的各种领域。
上一篇:降低电极接地电阻的方法
下一篇:可控硅(晶闸管)的检测方法
推荐阅读最新更新时间:2023-10-18 16:24
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知
- 玩儿转电源游戏,赢取800元TI手持POS机开发套件!
- 有奖直播:如何使用英飞凌IGBT7设计高性能伺服驱动
- 免费试用+优惠购+任务解锁赢好礼!这个夏天pyboardCN V2畅玩走起!
- Nexperia 模拟和逻辑芯片 更低的电压、更出色的性能 答题赢好礼!
- 观看TI无线连接专场研讨会 下载TI无线电子书有礼
- 已结束 |TI 新一代 MSP430™ 产品在低成本超声波水表中的方案介绍及快速应用指南
- 参与e络盟与 TE 传感器的问卷活动,赢50元亚马逊购物券!
- 吉时利DMM6500 6½ 位数字触摸屏万用表六大功能,满足工程师的切身需求,献给有梦想的你!
- 2009 EEWORLD 年度人物大评选活动评奖揭晓