基于NCP1031的以太网供电DC-DC转换器技术设计

最新更新时间:2012-03-20来源: 互联网关键字:以太网  DC-DC转换器  技术设计 手机看文章 扫描二维码
随时随地手机看文章
本文介绍了一种采用安森美公司NCP1031系列单片高压开关稳压器(带内部MOSFET)的以太网供电(PoE)解决方案。这篇应用指南详细说明了如何构建低价高效、输出功率达5.0到6.5W的5.0V直流电源(输出功率取决于转换模式-详见下文所述的直流/直流转换器工作原理),其中还包含了与响应PoE检测和分类协议相关的输入电路。安森美公司可以根据用户要求提供相关电路的示范PCB。

PoE背景介绍

作为IEEE802.3AF标准,如今通过以太网数据传输线向以太网通信设备馈电已经成为现实,只要终端功率要求小于13W。直流电源传输和相关术语的详细内容可参考该IEEE文档。PoE由两个电源实体组成,即供电设备(PSE)和受电设备(PD)。PSE一般向LAN线缆提供48V标称直流电压,而PD是在线缆另一端的小型直流/直流转换器,能将48V转换成5.0Vdc或3.3Vdc之类的逻辑电平供通信电路使用。PD应该能在最大平均输入功率12.95W时工作,并能承受36到57Vdc范围的输入电压。另外还需要一种特定“协议”实现PD的检测(签名模式)以及根据最大功率电平进行的分类(分类模式)。

签名检测:上游PSE设备通过向PD输入端输送两个在2.8到10Vdc范围之内的不同电压来检测PD。如果通过V/I斜率测得的PD阻抗大于23.7kΩ小于26.25kΩ,就认为存在PD设备。如果阻抗小于15kΩ或大于33kΩ,就认为PD不存在,也不会再进一步施加电压。

分类模式:为了根据目标功率电平分类PD,PSE还会向PD输送一个14.5到20.5Vdc之间的电压。根据该电压下PD的吸收电流决定PD的类别,详细总结于下表。

额外的输入特性

除了签名和分类电路外,PD还必须包括在输入电压到来时将来自PSE的浪涌电流限制在400mA之内的电路,并防止直流/直流转换器引起的任何静态电流或阻抗在签名和分类过程中被忽略。

具体的签名/分类电路

参考图1所示原理图,输入签名和分类电路是围绕着几个分立和低价的安森美半导体器件设计的,其中包括了
TL431可编程参考电路、2N7002信号电平MOSFET、2N5550 NPN晶体管、NTD12N10 MOSFET和几个齐纳二极管及电阻电容。为了实现签名检测,24.9k电阻(R1)直接放于输入端。要注意的是,在签名检测阶段,输入电压低于10V,由U1、Q2和R4组成的恒定电流源处于关闭状态,因为必须超过9.1V击穿电压才能完成这个电路的偏置。还要注意的是,作为直流/直流转换器回路管脚中串接的输入开关管MOSFET Q3也是关闭的,直到输入电压超过约27V。该电压等于D2的击穿电压和Q3的栅极门限电压之和。


图1:PoE受电设备(PD)原理图。

随着电压上升到分类电平,D1将在电压超过约9.8V时导通,由U1、Q2和电阻R4组成的电流源被打开,并且电流由U1参考电压(2.5V)和分类电阻R4精确地控制。

一旦分类完成并确认后,输入电压就可以跃升到标称值48V。一旦这个电压超过Q3的栅极门限和D2的击穿电压之和,Q3就开始导通。不过Q3不会突然导通,由于存在由R6和C2组成的RC时间常数,它会立即进入线性区工作。立即工作在线性区可以限制浪涌电流,因为Q3在这段时间内等效于一个电阻。D3将Q3栅极的电压钳位在15V,当来自PSE的输入关闭时,R5给C2提供放电路径。MOSFET管Q1与Q3一样也在相同电压时导通,这样就关闭了U1/Q2电流源,从而减少来自输入端的额外漏电流。

[page]直流/直流转换器工作原理

直流/直流转换器是利用安森美公司的单片NCP1031开关稳压器芯片(U2)而设计的。在最大输出功率为5.0W时,转换器被配置为采用普通TL431和光耦电压反馈机制的非连续模式(DCM)回扫拓扑结构。修改变压器设计和控制环路补偿网络使之工作在连续导通回扫工作模式能将输出功率提升到6.5W(1.3A)。输入端使用由C3、L1和C4组成的差模π型滤波器。

当6脚的欠压端子超过2.5V时控制芯片开始启动。由R7、R8和R9组成的电阻分压网络将芯片的欠压和过压电平分别设置在35V和80V。通过引脚8提供内部启动偏置并驱动恒流源给Vcc电容C7充电。一旦U2导通,变压器T1的辅助线圈(引脚2,3)就通过二极管D1和电阻R11提供工作偏置。

由漏感T1引起的电压尖峰被C5、D6和R10组成的网络所钳位。R10上的实际额定功率是T1初级到次级漏电感的函数,并且越低越好。电容C6将转换器的开关频率设置在约220kHz。

由于需要二级隔离,TL431(U4)作为误差放大器与光耦(U3)一起形成了电压检测和反馈电路。通过将电压检测引脚3接地已经使U2中的内部误差放大器失效了,而引脚4上的放大器输出补偿节点用来通过光耦的光阻控制脉冲宽度。检测到的输出电压被R16和R17分压成TL431的2.5V参考电平,并由C9和R15设置适合DCM工作的闭环带宽和相位余量。如果配置成CCM回扫工作,还需要额外的元件(C14、C15和R12)来稳定反馈环路。初级侧的C8向U2提供噪声去耦和额外的高频滚降性能。这种实现方案提供的输出调整率在线路和负载变化时均好于0.5%,闭环相位余量好于50℃。

输出整流管D5是一个用于提高效率的3A肖特基器件,其输出电压要经过由C11、L2和C12组成的π网络滤波。滤波输出的典型峰峰值噪声和纹波在所有正常负载和线路条件下都小于100mV。C13提供额外的高频噪声衰减。典型的输入到输出效率在满负荷条件下为75%左右(图2)。用基于MOSFET的同步整流电路代替D5可以获得更高的效率(安森美的应用指南AND8127详细介绍了如何实现回扫拓扑结构的简单同步整流电路)。



图2:效率与输出功率关系图。

过流保护功能是由NCP1031中的内部峰值电流限制电路提供的。在25℃环境中,当该电路配置为CCM回扫模式时,可以在过流和/或过温限制功能启动前提供1.3A的连续输出电流,浪涌电流可高达1.5A。当配置为非连续模式时,电流限制在约1.0A左右,峰值电流可到1.2A。

电磁设计

非连续模式的回扫变压器设计详见图3,连续模式的变压器设计见图4。在回扫变压器设计中,重点是将绕组保持在单层中,并在磁芯结构的窗口长度上均匀分布,以便尽量减少漏感。在本方案中这一点可以很容易利用Ferroxcube公司的小型EF16铁氧体磁心实现。

 
图3a:非连续模式回扫变压器描述。
[page]
图3:非连续模式回扫变压器设计。

 

图4a: 连续模式变压器描述。


图4:连续模式变压器设计。

非连续与连续模式工作

表1:以太网电源等级分类。

 
在非连续模式回扫工作中,电感电流在MOSFET开关再次打开前降到了零。这种工作式使得输出具有一阶滤波器网络特性,因此反馈环路的稳定电路简单,可以获得较宽的带宽并实现良好的输出瞬态响应。但遗憾的是这种工作模式会产生较高的峰值开关电流,并由于存在内部电流限制设置点和NCP1031中的热保护电路而限制了电路的输出功率。而在连续电流工作模式中,MOSFET可以在电感电流到零之前回到导通状态,因此峰值开关电流较低,无需过流保护干涉就能获得较高的输出功率。不过这种工作模式也有代价,那就是控制环路带宽必须做得更低,因此对负载和线路变化的瞬态响应较差。CCM工作模式会在电源拓扑响应特性中引入右半平面零点,需要用图2所示额外的反馈元件进行补偿才能获得合适的反馈稳定性。由于输出整流器此时必须强制关闭整流功能,因此CCM还会产生较多的电磁干扰。
关键字:以太网  DC-DC转换器  技术设计 编辑:冰封 引用地址:基于NCP1031的以太网供电DC-DC转换器技术设计

上一篇:同步升压转换器设计中MOSFET的选择策略
下一篇:正激功率变换器磁复位技术分析研究

推荐阅读最新更新时间:2023-10-18 16:32

城域以太网论坛MEF全球会员公司数量突破200大关
洛杉矶--(美国商业资讯)--在其截至2012年6月30日的会计年度结束时,城域以太网论坛(MEF)的全球会员公司数量首次突破200大关。该会计年度是MEF成立的第11个年头,其间所取得的其他主要成就包括超过150家服务提供商和设备厂商通过了CE 1.0认证,并且MEF-CECP(MEF运营商级以太网认证专业人士)的数量如今已突破300大关—预计在接下来的一年里,这一数字将增加两倍。 MEF主席Nan Chen表示:“过去的12个月里,MEF硕果累累。我们的全球会员数量不断增加,这彰显了该行业对全球化以及顺利推行标准化运营商级以太网服务的承诺。它还给我们提供了让我们能够大胆追求目标的关键大众,是过渡到我们最近公布的CE 2.
[网络通信]
基于DM642机器视觉系统的设计与实现
1、引言        机器视觉自起步发展到现在,已有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。        目前,国际上视觉系统的应用方兴未艾,1998年的市场规模为46亿美元。在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路。主要的机器视觉公司诸如德国克朗斯公司,美国的工业动力机械有限公司等等。        而在国内,工业视觉系统尚处于概念导入期,导致以上各行业的应用很少,即便是有,也只是低端方面的应用,大多数国内公司多代理国外公司产品,自主研发的相对较少,这样产品在国内售
[嵌入式]
基于CAN-bus和以太网的区域信息管理系统
概述: 介绍一种CAN-bus网络与以太网连接,构成一个中型远程监控/数据传输网络的方法。     CAN(Controller Area Network——控制器局域网)是一种由CAN控制器组成的高性能串行数据局域通信网络,是国际上应用最广泛的现场总线之一。它最早由德国Bosch公司于1984年推出,最初用于汽车内部测量与执行部件之间的数据通信。CAN-bus总线模型符合OSI的7层结构;CAN-bus规范已被ISO估计标准组织制定为国际标准。由于其具有多主机方式、传输距离远(最远可达10km)、传输速度快(最快可达1Mbps)、抗干扰能力强、应用灵活等诸多优点,所以被认为是最有发展前途的现场总线之一。目前,除了应用于
[嵌入式]
基于以太网和现场总线的集散控制系统
0 引言 进入新世纪以来,伴随着市场的进一步开放,企业之间的竞争不断加强,各企业纷纷投入资金加紧 进行新一轮的技术改造,希望能以高新技术为核心,以综合自动化为手段,不断提高产品质量,确立和加强企业在市场竞争中的地位。随着计算机、控制器、网络、总线技术的发展,自动化领域正在迅速的覆盖从车间的现场设备到控制、管理的各个层次。分散检测控制、集中监控管理的集散控制方式为实现大系统的综合自动化创造了条件。 1 概述 计算机具有强大的运算、存储、逻辑判断等信息加工能力,从它诞生开始就被应用到控制系统中, 特别是微处理器的出现,进一步扩大了计算机的应用范围。在计算机上配以自动化组态软件可以更直观、更方便地对生产过程进行监视和控制,充分发挥计算机
[嵌入式]
浅谈单片机以太网接入方案
单片机的种类繁多,从低端到高端,有以51单片机为代表的8位单片机和以ARM为代表的32位单片机,不同档次的单片机实现网络接口的方法不同。对于像ARM等高端处理器一般都可以运行嵌入式操作系统,例如嵌入式Linux。对于无操作系统要求的单片机如何实现网络接入,我下面将这些方案按TCP/IP协议栈的不同归结为两大类:第一类是传统的软件TCP/IP协议栈方案;第二类是最新的硬件TCP/IP协议栈方案。下面我就这两类方案的实现方式进行分析。 1. MAC+PHY方案 所谓的TCP/IP协议栈是一系列网络协议的统称,不仅包括我们熟知的TCP协议和IP协议,还有网络层的ICMP(Internet控制报文)协议、IGMP(Internet
[单片机]
浅谈单片机<font color='red'>以太网</font>接入方案
通过以太网实现自来水厂两套独立自控系统的连接
前言 茂名市自来水公司河东水厂已建成两期,两期的工艺和设备都由国外引进,控制系统均采用由PLC(可编程逻辑控制器)和PC(个人电脑)组成的计算机集散控制系统,自动化程度较高。由于两套系统采用的通信协议不同,所以它们没能很好地整合,它们之间没有数据通信,这给生产控制、生产报表的编制和值班人员的操作带来一定困难。鉴于上述情况,我们决定利用以太网和监控组态软件INTOUCH来实现它们的连接,使之成为一套完整的系统。 一、 系统组成及存在问题 两套系统采用不同的PLC,两者网络拓扑结构不同,通信协议不同(采用厂家自己的协议),第一期采用的是THYSSEN PLC,网络拓扑结构为环形结构,通信协议采用T800;第二期采用Telem
[嵌入式]
stm32以太网LWIP学习笔记之UDP通信
初始化配置步骤 第一:硬件底层DMA缓存以及以太网内存初始化 if(ETH_Mem_Malloc())return 1; //内存申请失败 if(lwip_comm_mem_malloc())return 1; //内存申请失败 u8 ETH_Mem_Malloc(void) { DMARxDscrTab=mymalloc(SRAMIN,ETH_RXBUFNB*sizeof(ETH_DMADESCTypeDef));//申请内存 DMATxDscrTab=mymalloc(SRAMIN,ETH_TXBUFNB*sizeof(ETH_DMADESCTypeDef));//申请内存 Rx_Buff=m
[单片机]
【泰克干货分享】 汽车以太网一致性之 MDI 模式转换损耗测试
随着汽车安全性和娱乐性的要求不断提高,车载网络 (IVN) 的数据速率要求也在不断提高。高级驾驶辅助系统 (ADAS) 和驾驶舱信息娱乐系统等系统变得越来越快,越来越复杂。 制造商正在转向车载网络的研究,用以支持 ADAS 和驾驶舱信息娱乐系统中设备的数据速率传输。为了保障汽车以太网环境下,设备能够正常运行,发射端、接收端和电缆 / 连接器组件等部件必须通过一系列 一致性测试 。 MDI 模式转换损耗测量可确保 ECU 到 ECU 的通信产生 的 EMI/EMC 符合一致性。 IEEE P802.3bw D3.3 和 IEEE P802.3bp 标准确定了几种一致性测试,以确保设备的互操作性。 介质相关接口 (MDI) 模式转
[汽车电子]
【泰克干货分享】  汽车<font color='red'>以太网</font>一致性之 MDI 模式转换损耗测试
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved