电源控制器PWM芯片分析

最新更新时间:2012-04-28来源: 21IC关键字:电源控制器  PWM  芯片分析 手机看文章 扫描二维码
随时随地手机看文章

1 概述

随着现代通信设备的迅速发展,特别是微电子技术的发展,伴随着各种电源的发展,各种各样的 PWM型直流变换器集成控制器也不断出现,这使开关稳压电源的元件数量大幅度减少。这不但使开关稳压电源的可靠性提高,而且还能简化开关稳压电源的设计计算,使开关稳压电源更便于生产和维护。

本文针对当今比较流行的一款电源控制器PWM芯片进行了分析。

2 工作原理

芯片的原理框图如图1。内部电路主要由10部分组成:振荡器、PWM比较器、限流比较器、过流比较器、基准电压源、故障所存器、欠压启动电路、欠压锁定、PWM锁存器和输出驱动器。


2.1 振荡器

芯片工作时,振荡器为电路提供方波,是电路最关键的一部分电路。方波的产生由锯齿波输入比较器得出,锯齿波上升沿的斜率由 R t 和Ct决定,确定R t 和Ct的方法是:首先根据求得的最大占空比Dmax选择Rt Rt,再根据要求的频率以及R t 和Dmax选择Ct。计算公式为
Rt=3V/[(10mA)(1- Dmax)]
Ct=1.6×D max/( R t×F) R t 的最佳值应为1Ω到10kΩ;Dmax应小于70%。图2是 R t 和Ct与频率f的关系。


2.2 上升沿封锁

本芯片采用固定频率脉宽调制,两个输出端可同时输出脉冲,输出脉冲的频率与振荡器频率相等,脉冲占空比可在0到100%内调整。两个输出端交替输出脉冲。为了限制最大占空比,在振荡器放电期间,内部时钟脉冲对两路输出进行封锁。在时钟的下降沿,输出端为高电平。输出脉冲的下降沿由脉宽调制比较器,限流比较器和过流比较器联合控制。通常,脉宽调制比较器检测出斜波电压与控制电压的交点,并且在该交点处终止输出脉冲。因为采用了上升沿封锁,在脉冲前沿的一定时间内,脉宽调制比较器不起作用。这样,开关电源的固有噪声就能被有效地控制。同时由于采用了输出脉冲上升沿封锁,脉宽调制器的斜波输入就不需要再经过滤波。上升沿封锁也是用于限流比较器。上升沿封锁之后,如果限流(1LIM)脚的电压超过1V,输出脉冲就终止。但是,过流比较器不能采用前沿封锁,这样,就不会因为前沿封锁而延长保护时间,从而可以及时捕捉过流故障。在任何时间,只要限流(1LIM)脚的电压超过1.2V,故障闭锁就起作用,从而使输出端变为低电平。

2.3 欠压锁定、软启动以及故障处理

软启动是通过软启动(SOFT START)脚的外接电容实现的。接通电源后,软启动脚外接电容放电,该脚处于低电平,误差放大器输出低电平,开关电源无输出电压。

启动脚外接电容充电时,误差放大器输出电压逐渐升高,直到闭环调节功能开始工作,开关电源输出电压逐渐升高到额定值。一旦电流(1LIM)脚的电平超过1.2V,故障锁存置位输出脚变为低电平,同时,软启动脚外接电容以250μA的电流放电。在软启动电容放电以后,限流脚电平降到1.2 V以下时,故障锁存器就不再输出脉冲,这时,故障锁存器复位,芯片开始软启动过程。在软启动期间, 万一故障锁存器置位,输出会立即终止。但是软启动脚外接电容在充足电之前不会放电。这样,在故障连续出现的情况下,输出就会出现一个间断期。

2.4 电流输出电路

芯片推拉式输出电路的每个输出端都可输出峰值为2A的电流。该输出电流在20ns内可使1000pF电容两端的电压上升15V。采用独立的集电极电源和功率地线脚,能够减小大功率门极驱动噪声对集成电路内模拟电路的干扰。每个输出端(OUT)到集电极电源和地线之间都应加入一只3A的肖特基二极管,该二极管可以将输出电压的幅值钳位在电源电压。这对于任何电感性和电容性负载都有必要。应当指出,该芯片采用的二极管不是一般的二极管,而是肖特基二极管,因为要求二极管的压降很低,大部分3A肖特基二极管均可以满足这一要求。

3 振荡器电路及分析

这部分的具体电路如图3。本电路主要是实现振荡器的功能。振荡器在开始工作时,out2的电压为零,左边是由三个三极管Q6、Q7、Q8组成的恒流源,对其外接电容 Ct充电。此时out2的电位开始上升,out2的电位与Q4的基极的电位进行比较。如果out2的电位高,则Q4截止,out1输出的方波为高电位, 此时Q12管的基极电位也升高到足够让Q12管开始导通,并对 Ct电容开始放电;如果out2的电位低于Q4管的基极电位,则Q4管导通,此时out1输出为低电位,Q12管的基极电位比较低,Q12管截止,不对 Ct放电;Q6、Q7、Q8管组成的恒流源继续对电容 Ct充电,out2的电位继续升高,最终使电位高于Q4基极电位。out1的电位输出为高电平,Q12管导通并截止对 Ct的充放电,使得在out2处产生锯齿波,out1处输出方波。本文使用PSPICE软件对电路进行模拟分析时产生的波形如图4。


本芯片的振荡器设计时使用了很多恒流源,因为恒流源的直流电阻很小,而交流电阻很大,从而使振荡器在工作时,流过主要支路的电流稳定。交流电阻大,可使电流流过电路元件时产生的压降变化很小(电路电流为μA级)。Q17、Q19、 R16、R17在out1输出为高点平时为Q12的基极钳位,使之达到足够高的电位来导通Q12。外接电阻Rt 的大小直接影响Q15集电极电流的大小,从而达到控制Q6、Q7、Q8组成的恒流源对外接电容 Ct充电电流的大小。电流越大,对电容充电的时间越短,产生锯齿波的周期也越短。R11、R 12、R13、R14 电 阻都为小值电阻,在版图设计时应该做得极为精确,因为是由它们共同决定Q12发射极的电位。电阻R6、R 15对Q11的基极进行钳位,使Q11管处于永远导通状态,此时的Q13也为导通状态。流过 Q13发射极的电流为在Q12管截止时的Q21、Q18工作提供电流。

4 电路及工作原理

振荡器的电路如图5。它由Q1、Q2组成双阈值比较器,Q1的基极与一个恒流源及外接电容C t相连;Q2的基极A点电位受Q1的截止和导通控制,交替在高、低电平间转换。当Q1截止时,A点为高电平;当Q1导通时,A点为低电平。由Q3、 Q4、Q5组成一个严格对称的精密威尔逊恒流源,其参考电流受5脚外接电阻 Rt控制,其工作过程如下:开始工作时( t=0),电容Ct上的电压VC t=0=VbQ1<Vb Q2,从而使Q1截止,Q2、Q3导通,A点电位为高电平,Q4、Q5、Q6截止,恒流源给Ct充电;当VC t升至高电平后,Q1导通,Q2、Q3截止;A电位低电平,Q4、Q5、Q6 导通,Ct通过Q4放电,VC t下降。当VCt下降至低电平时,Q1截止,Q2导通,比较器翻转并如此循环。图5中out3得到的锯齿波和图2中out2振荡器产生的锯齿波相同,图5中out1输出的波形和图 2中out1处产生的方波相同,结果证明设计是可行的。


5 结论

最终的振荡器的简化设计电路经过模拟得出的结果和本文分析的芯片中的振荡器相比,虽然可以实现同样的功能,但是产生的锯齿波的最高频率和芯片中振荡器产生的锯齿波的最高频率相比,还有一定的差距。
关键字:电源控制器  PWM  芯片分析 编辑:探路者 引用地址:电源控制器PWM芯片分析

上一篇:基于PEMFC的控制系统电源的设计分析
下一篇:L5991芯片在开关电源中待机功能的设计实现

推荐阅读最新更新时间:2023-10-18 16:41

带PFC的反激型LED电源控制器解决方案
  LED电源控制器是LED照明应用的关键器件之一。Marvell公司的88EM8080/81器件是一个带功率因素校正(PFC)的反激型高性能LED电源控制器。本文结合先进的固态(SS)照明器件解决方案,介绍新一代照明电源技术。重点聚焦单级PFC反激变换器的性能、特点和应用上的优势。随着国内快速发展LED照明应用产品,LED产业链的上游产品控制器芯片必定会得到越来越多的重视。   拓扑   Marvell公司的88EM8080/81器件是通过独特的数字信号处理器(DSP)技术设计的解决方案。相对于复杂的双级AC/DC电源变换器,反激PFC(隔离buck/boost)拓扑技术是一种简化了电路技术的隔离PFC转换级。在LED
[电源管理]
带PFC的反激型LED<font color='red'>电源控制器</font>解决方案
国内外主要指纹识别芯片厂商分析
       2015年全球应用于智能手机的指纹识别芯片的封测+模组加工费的市场规模为:12.5*30%*1.65=6.19亿美元,约为38亿元人民币;2016年全球应用于智能手机的指纹识别芯片的封测+模组加工费的市场规模为:14.8*60%*1.65=14.65亿美元,约为89亿人民币。   1.传统指纹识别芯片厂商各据山头   AuthenTec   AuthenTec一直是全球感应性指纹识别传感器最大供应商,其指纹识别组件很多年前就被嵌入了Windows笔记本。2012年7月苹果公司斥资3.56亿美元收购了AuthenTec公司,AuthenTec停止向第三方销售传感器。   公司TruePrint专利技术采
[安防电子]
应用于开关电源的绿色节能电源控制器
    SD486X系列芯片是由杭州士兰微电子推出的应用于开关电源的内置高压MOSFET、电流模式PWM+PFM控制器。该系列芯片具有低功耗、低启动电流和较低的EMI,最高效率可以达到84%以上,启动电压、输出电压和最大功率均可调节。目前芯片可以提供的功率范围为:宽电压范围5~18W,窄电压范围7~21W。可广泛应用于机顶盒、DVD播放机、电源适配器等整机产品中。     该系列芯片具有峰值电流补偿电路,可以为芯片提供最大功率平衡,该电路初始化后,可有效的减小芯片启动时变压器的应力。根据负载的实际情况,芯片的开关频率可在24~67KHz范围内进行调节,轻负载的降频模式和峰值电流控制功能可以为芯片提供更高的效率。此外,芯片的ADJ端具
[电源管理]
应用于开关电源的绿色节能<font color='red'>电源控制器</font>
一款高效绿色降压型开关电源控制器芯片的设计方案(一)
1 引言   降压型集成开关电源控制器广泛应用于各类便携式设备中。 近年来,随着电池供电的便携式设备,如手机、MP3 播放器、PDA 等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。   为提高效率和减少片外元器件, 目前应用的Buck变换器通常集成了功率开关和同步整流开关。 同时, 为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。 由此带来的问题是,当变换器工作在轻载条件下, 开关损耗就变成了主要的功率损耗。 而便携式设备恰恰常工作于待机状态即轻载工作状态下,轻载效率对于延长电池的使用寿命至关重要。 因此,提高轻载效率的问题受到了高度关注。   解决
[电源管理]
一款高效绿色降压型开关<font color='red'>电源控制器</font><font color='red'>芯片</font>的设计方案(一)
Intersil推出新型数字电源控制器ZL8800
     2013年11月12日 — 创新电源管理与精密模拟解决方案的领先供应商Intersil公司(纳斯达克全球交易代码:ISIL)今天宣布,推出一款可帮助复杂电源系统的设计者降低设计风险、时间和成本的高集成度创新数字DC/DC电源控制器--- ZL8800,使其行业领先的电源管理集成电路产品系列继续扩大。     ZL8800是一款双通道/双相控制器,它利用电荷模式 (ChargeMode) 控制回路技术来提供快速的瞬态响应而无需补偿,有助于节省设计时间。它为数字负载点 (POL) 应用提供同类最佳的瞬态响应,有助于节省输出电容和电路板空间。事实证明,最新一代基站、路由器及类似的基础设施设计可显著受益于此先进电源系统。  
[电源管理]
Intersil推出新型数字<font color='red'>电源控制器</font>ZL8800
DMD芯片的优势及常见的应用场景分析
随着投影技术的广泛运用,DLP相关的技术也被人熟知,而DLP背投的核心就是DMD芯片,本文将从DMD芯片的优势与应用,带大家全面认识投影技术。 DMD器件是DLP的基础,一个DMD可被简单描述成为一个半导体光开关,DMD的工作原理就是借助微镜装置反射需要的光,同时通过光吸收器吸收不需要的光来实现影像的投影,而其光照方向则是借助静电作用,通过控制微镜片角度来实现的。 DMD芯片技术的三大优势 一、体积小 DMD芯片上密密麻麻地排列了80万至100万面小镜子,而且每个小镜子都可以独立向正负方向翻转10度,并可以每秒钟翻转65000次。光源通过这些小镜子反射到屏幕上直接形成图像。其光学路径也相当简单,体积更小。 二、成像逼真 DMD可
[嵌入式]
NFC-SIM芯片设计及非接触移动支付解决方案分析
随着3G时代的到来,未来两年内移动终端身份识别SIM卡会向三个方面发展:其一:高安全的身份识别平台;其二:非接触移动支付平台;其三:大容量多应用平台。在移动互联网进入内容为王的时代,移动支付成为一个必然的趋势,SIM卡必然随着这两个趋势的要求,向NFC非接触移动支付及大容量方向发展,最终会融合到一起,成为真正的多应用平台。 据深度了解,中国移动早在2006年就曾展示其“手机门票”服务,直到此次上海世博会,中国移动借此实现了该业务的大规模商业推广,从而也成为目前国内三大电信运营商中首家展开该业务的先行者。这无疑将为中国移动未来在该领域的竞争抢得先机,而以“手机门票”为代表的电子销售渠道,恰恰是未来电信运营商争夺的一个巨大市
[模拟电子]
NFC-SIM<font color='red'>芯片</font>设计及非接触移动支付解决方案<font color='red'>分析</font>
分析师:芯片公司股价上涨并非行业复苏前兆
据国外媒体报道,分析师们认为,虽然最近几周顶级芯片公司的股价出现比较大幅度的上涨,不过没有证据显示芯片市场已经触底反弹。 德州仪器在3月9日就表示,1月和2月的订单已经开始增加,此后台积电、三星和海力士也都发布了一些积极信号。但德州仪器也指出,在订单略微增加的同时,芯片需求依然在下降,没有看到复苏的迹象。而海力士的DRAM芯片价格上涨,主要是减产导致。 Gartner的分析师乔恩·艾伦森(Jon Erensen)认为,我们看到了一些积极的信号,很长时间以来这是第一次,但这并非是持续性复苏的开始。艾伦森和其他分析师都表示,出现积极信号主要是因芯片买家降低了存货,而非需求上升。 不过,芯片公司的股价却是上涨了不少。3
[半导体设计/制造]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved