优化PCB布局实现高速ADC设计

最新更新时间:2012-04-28来源: 21IC关键字:PCB布局  高速ADC  转换器 手机看文章 扫描二维码
随时随地手机看文章

  高速设计往往易被忽视或者相当重要。系统电路板布局已成为设计本身的一个主要组成部分,因此,我们必须了解影响高速信号链路设计性能的机制。

  尽管身为工程师,但我们也很可能“制造”较多麻烦。因此,切忌过分挑剔而使CAD工程师陷入设计困境,这并不能给性能带来任何改善。

  不要忘记裸露焊盘

  裸露焊盘有时会被忽视,而它对充分发挥信号链路性能和帮助器件散热却非常重要。裸露焊盘在ADI公司我们通常称之为引脚0,是目前大多数器件下方的焊盘。它是一个重要的接点,一般芯片的所有内部接地都是通过它而连接到器件下方的中心点。

  您是否已注意到目前有许多转换器和放大器都缺少接地引脚?裸露焊盘就是其原因所在。关键是要将此引脚妥善固定(即焊接)到印刷电路板(PCB),而实现鲁棒的电气和热连接,否则,系统设计可能遭到各种破坏。

  利用裸露焊盘实现最佳电气和热连接基本分为三个步骤。首先,在可能的情况下,在PCB的各层上都复制裸露焊盘,这将为所有接地和接地层提供较厚的热连接而实现快速散热。

  此步骤与大功率器件和具有多通道的应用相关。在电气方面,这将为所有接地层提供良好的等电位连接。您甚至还可以在底层复制裸露焊盘(图1),这可作为去耦用热风焊盘接地点和安装底侧散热器的位置。

 

  

  图1:在每一层上复制裸露焊盘能够帮助创建鲁棒的电气和散热接地连接,同时,还能为热风焊盘和底侧去耦增加附加区域。

  其次,将裸露焊盘分割成棋盘似的多个相同部分。这可以通过两种方式实现:在敞开的裸露焊盘上使用丝网印刷交叉阴影线或者阻焊膜。此步骤可以确保器件与PCB之间的鲁棒连接。在回流焊组装工艺中,无法确定焊锡膏如何流动并最终将器件连接到PCB。

 

  

  图2:如果裸露焊盘未被分割并且通孔未被填充,回流焊过程中将会形成空洞。

  出现的问题是,连接可能存在但分布却不均匀。可能仅仅得到一个连接并且连接很小,或者更糟糕的是,此连接位于拐角处。将裸露焊盘分割成较小部分,能够确保每个区域都有一个连接点,从而实现更鲁棒的、均匀连接的裸露焊盘(图2和图3)。

 

  

  图3:分割PCB上的裸露焊盘有助于在电路板装配过程中PCB与IC粘合得更紧密。

  最后,应当确保各部分都有过孔连接到地。各区域通常都很大,足以放置多个过孔。组装之前,务必用焊锡膏或者环氧树脂填充每个过孔,这一步非常重要,可以确保裸露焊盘焊锡膏不会回流到这些过孔空洞中,而降低正确连接的机率。

  去耦和平面电容

  有时我们会忽略使用去耦的目的,而仅仅在电路板上分散许多数值的电容,使较低阻抗的电源连接到地。但问题依然存在:到底需要多少电容?

  许多文献表示,应使用多个电容和多个数值来降低输电系统(PDS)的阻抗,但这并非完全正确。事实上,仅需选择正确数值和正确“种类”的电容,就能降低PDS的阻抗。

  比如我们要设计10mΩ的参考平面,如果在系统电路板上使用多个电容值,便可降低在500MHz频率范围内的阻抗,如图4中的红色曲线所示。

  

  图4:标准的去耦电容可以帮助降低高达500MHz的PDS阻抗,而频率超过500MHz时则由平面电容解决。了解所用电容可以降低设计中所用电容的数量和类型。

  然而,让我们再看一下绿色曲线,其在同样的设计上仅使用了0.1μF和10μF两种电容。这证明了如果使用恰当的电容,则不需要采用如此多的电容值。这也有助于节省布局和物料清单(BOM)成本。

  然而,并非所有的电容“生来平等”,即使来源于同一供应商,其工艺、尺寸和样式也有差别。如果未使用正确的电容,则不论是采用多个电容还是采用几种不同类型的电容,其结果都会给PDS带来反作用。

  放置电容或者使用不同的电容工艺和型号都有可能形成电感环路,它们将对系统内的频率做出不同响应以及彼此之间发生谐振(图5)。

  了解系统所用电容类型的频率响应非常重要。随便选用电容会让设计低阻抗PDS系统的努力付诸东流。

  要设计出合格的PDS,需要使用各种电容(再见图4)。PCB上使用的典型电容值只能将直流或者接近直流的约500MHz频率范围内的阻抗降低。在500MHz以上时,电容将由PCB形成的内部电容决定。电源平面和接地平面是否叠置得足够紧密?

  为此,请设计一个支持较大平面电容的PCB层叠结构。例如,六层堆叠结构可能包含顶部信号层、第一接地层、第一电源层、第二电源层、第二接地层和底部信号层。规定第一接地层和第一电源层在层叠结构中彼此靠近。将这两层的间距设定为2~4mil,将形成一个固有的高频平面电容。

 

 

  图5:通过了解电容类型和布局可将环路电感降至最小,从而防止出现较高的PDS阻抗。

  此电容的最大优点在于它免费,您只需要在PCB制造笔记中进行说明即可。如果必须分割电源平面,并在同一平面上具有多个VDD电源轨,则应使用尽可能大的电源平面。不要留下空洞,同时还应注意敏感电路。这将使该VDD平面的电容达到最大。

  如果设计允许存在额外的层(本例中由六层变为八层),则应将两个额外的接地平面放在第一和第二电源平面之间。在核心间距同样为2~3mil的情况下,层叠结构的固有电容将会加倍(图6)。此结构更易于设计,然后,可添加更多分立高频电容以保持低阻抗。

 

  

  图6:通过设计具有邻近电源平面和地平面的PCB堆叠结构,可在PCB中得到高频电容。这将在较高频率下满足较低阻抗。

  对于PDS而言,将响应电源电流需求时出现的电压纹波降至最低非常重要,但这点却常被忽略。所有电路都需要电流,有些电路需求量较大,有些电路则需要以较快的速率提供电流。采用充分去耦的低阻抗电源或接地平面以及良好的PCB层叠,可以将因电路电流需求而产生的电压纹波降至最低。

  根据使用的去耦策略,如果系统设计的开关电流为1A且PDS的阻抗为10mΩ,则最大电压纹波为10mV。计算公式很简单:V=IR。

  凭借完美的PCB堆叠,便可覆盖高频范围,同时,在电源平面的起始入口点和大功率或浪涌电流器件周围使用传统去耦,便可覆盖低频范围(《500MHz)。这将确保PDS阻抗在整个频率范围内均为最低。

  没有必要在各处都布置电容,也没有必要为了把电容布置在正对着每个IC的位置,而破坏所有的制造规则。如果需要采用这种过激的措施,则说明电路中存在其它问题。

 

  

  图7:注意:作为噪声层的PCB堆叠可能位于下方,从而可能耦合信号到敏感的模拟电路、层或者平面。

  平面耦合

  一些布局不可避免地具有重叠电路平面(图7)。有些情况下可能是敏感的模拟平面(无论是电源、接地还是信号),下一层则是高噪声的数字平面。大多数设计人员认为这无关紧要,因为该平面位于另一层。因此,我们来做一个简单测试

  以某一层为例,在任一平面上注入信号。现在将与该相邻层交叉耦合的另一层连接至频谱分析仪。可以看到有多少信号耦合到了相邻层吧?即使两者间距为40mil,在某种意义上它却仍是电容,因此,在某些频率下仍会耦合信号至相邻平面(图8)。

 

  

  图8:高频处,标准FR4材料上的层间耦合可能无处不在(40~60dB),请注意隔离。对于特定设计可能足够,但隔离应视应用而定。

 

  举例来说,某层上的高噪声数字平面具有高速开关的1V信号,这意味着,另一层上将会“看到”1mV的耦合(约60dB的隔离)。对具有2Vp-p满量程摆幅的12位模拟数字转换器(ADC),这是2个最低有效位(LSB)的耦合。对于特定系统而言,这可能不成问题,但应注意,如果提升2位(从12位增至14位),灵敏度只会提高四倍,即8个LSB。

  忽略这种平面间耦合,很可能使系统失效,或者影响设计性能。这里必须指出的是,两个平面间存在的耦合可能超出想象。

  在感兴趣的频谱内发现噪声耦合时应注意这一点。有时布局决定了非预期信号或是平面将被交叉耦合到不同的层,在调试敏感系统时请记住这一点。该问题可能出现在下面一层。

  分离地

  全球模拟信号链设计人员最常提出的问题是,使用ADC时是否应该将地平面分离成AGND和DGND地平面?简单回答是:视情况而定。

  详细回答则是:通常不分离。在大多数情况下,盲目分离地平面只会增加返回电流的电感,因此,它所带来的坏处大于好处。还记得公式V=L(di/dt)吗?随着电感增加,电压噪声会提高。

  随着电感增加,您一直努力降低的PDS阻抗也会增加。随着增加ADC采样速率的需求继续增长,增加开关电流的方法却只有这些。因此,除非有理由分离地平面,否则请保持这些接地连接。

  关键是电路合理分割,这样就不必分离地平面(图9)。请注意,如果布局允许将各电路保持在各自区域内,便无需分离地平面。如此分割可以提供星型接地,因此,可将返回电流局限在特定的电路部分。例如,受尺寸限制的影响而使得电路板无法实现良好布局分割的情况。这可能是为了符合传统设计或尺寸要求而必须将恶劣的总线电源或高噪声的数字电路放在特定区域的缘故。这种情况下,分离地平面是实现良好性能的关键。

  

  图9:对于每一应用地平面分离可能并无必要,因为鲁棒的高速设计建立在固态PCB电路分区周围而将电流局限在特定区域。

 

  然而,为使整体设计有效,还必须在电路板的某个地方用一个电桥或是连接点将这些地连接在一起。因此,应将连接点均匀地分布在分离的地平面上。

  最终,PCB上的连接点往往成为使返回电流通过,而不会导致性能降低或者强行将返回电流耦合至敏感电路的最佳位置。如果此连接点位于转换器附近或下方,则根本无需分离接地。

  本文小结

  由于关于最佳布局的评论太多,所以在布局上的考虑总是令人困惑。技术和原则一直是ADI“设计文化”的一部分。在工程师倾向于借鉴以往设计经验的同时,产品的上市压力也使设计人员不愿去更改或是尝试新事物。他们拘泥于风险权衡,直至系统内出现了重大问题。

  在评估板、模块和系统层面,简单的单一接地适合于所有情况。良好的电路分割才是关键,这也将影响到平面和相邻层的布局。请注意,如果敏感平面在高噪声数字平面之上,则有可能发生交叉耦合。

  组装也是重要因素。提供给PCB车间或组装车间的制造笔记应善加利用,从而确保IC裸露焊盘和PCB之间具有可靠连接。因组装不良而导致的系统性能欠佳不计其数。

  不过,靠近电源平面入口点和转换器VDD引脚的去耦总是有利的。对于增加的、固有高频去耦,应利用4密尔(mil)或间距更小的紧密电源平面和地平面。此方法不会带来额外成本,只需花五分钟更新PCB制造笔记。

  在设计高速、高分辨率转换器布局时,无法照顾到所有的具体特性。每一应用各不相同,有的甚至更为独特。不过,上述关键点却可以帮助设计人员加深对未来系统设计的理解。

关键字:PCB布局  高速ADC  转换器 编辑:探路者 引用地址:优化PCB布局实现高速ADC设计

上一篇:Multisim在三相电路中的应用
下一篇:怎样去调试一个新设计的电路板

推荐阅读最新更新时间:2023-10-18 16:41

高速同步MOSFET 驱动器
凌力尔特公司推出高速同步 MOSFET 驱动器 LTC4443/-1,该器件用于驱动同步整流转换器拓扑中的高端和低端 N 沟道功率 MOSFET。这个驱动器与功率 MOSFET 和凌力尔特公司众多 DC/DC 控制器之一相结合,可形成一个完整的高效率同步稳压器,以用作降压或升压型 DC/DC 转换器。 这个强大的驱动器可以吸收高达 5A 的电流并提供高达 2.4A 的电流,从而非常适用于驱动大栅极电容、大电流 MOSFET。LTC4443/-1 还可以为较大电流应用驱动多个并联 MOSFET。当驱动 3000pF 负载时,快速 12ns 上升时间和 8ns 下降时间最大限度减小了开关损耗。该器
[新品]
D/A转换器设计原则
合理地选择D/A转换芯片及相关的外围电路,需要掌握各类集成电路的性能指标及引脚功能,以及与D/A转换模板连接的CPU或计算机 总线 的功能、接口及其特点。软硬件设计相结合。   此外还需注意:   (1)安全可靠:尽量选用性能好的元器件,并采用光电隔离技术;   (2)性能与经济的统一:一个好的设计不仅体现在性能上应达到预定的指标,还必须考虑设计的经济性,在选择集成电路芯片时,应综合考虑速度、精度、工作环境和经济性等因素。   (3)通用性:从通用性出发,在设计D/A转换器模板时应考虑以下三个方面:符合总线标准、用户可以任意选择口地址和输入方式。   D/A转换模板的设
[电源管理]
8位跟踪AD转换器电路图
8位跟踪A,D转换器电路图
[模拟电子]
8位跟踪AD<font color='red'>转换器</font>电路图
LTC3601/LTC3604单片DC/DC 转换器的应用
  当一个相对高的电压轨 (12V) 必须降至相对低的电平 (3.3V、1.8V) 时,传统上采用的转换器是一个驱动外部 MOSFET 的 DC/DC 开关控制器。在很多应用中,用单片稳压器取代典型的控制器-MOSFET-二极管组合式电路则可节省空间、设计时间和成本。问题是,就很多单片降压型转换器而言,12V 电压轨太高,这类转换器通常不能在输入高于 6V 的情况下使用。此外,开关损耗使得实际上无法在高于约 1MHz 时工作,从而排除了使用最小电感器这种可能性,因此单片稳压器在尺寸上的一些优势发挥不了作用。   LTC3601 和 LTC3604 是高性能单片同步降压型稳压器,分别能提供高达 1.5A 和 2.5A 的电流。这
[电源管理]
LTC3601/LTC3604单片DC/DC <font color='red'>转换器</font>的应用
2.7V 至 40V 单片降压-升压型 DC/DC 转换器增强了输入功能 在汽车冷车发动和负载突降瞬态时能无缝地稳定电压
手持式设备、工业仪表和汽车电子系统都需要能支持多种输入电压的电源解决方案,这些输入电压是由汽车输入电压瞬态、阻性电路压降和多种电源产生的。进一步的设计挑战是,应用常常需要各种稳定的电压轨,包括一些位于输入电压范围内的电压轨。LTC3115-1 降压-升压型 DC/DC 转换器具备范围很宽的 2.7V 至 40V 输入和输出电压能力、高效率、小占板面积、以及在升压和降压工作模式之间无缝转换的能力,易于满足这类应用的需求。 就汽车电子系统而言,LTC3115-1 在负载突降瞬态、甚至最严酷的冷车发动情况下,都可不间断地工作。该器件的可编程开关频率优化了效率,支持在 2MHz 频率工作,以确保开关噪声和谐波落在高于 AM 广播频段
[电源管理]
2.7V 至 40V 单片降压-升压型 DC/DC <font color='red'>转换器</font>增强了输入功能 在汽车冷车发动和负载突降瞬态时能无缝地稳定电压
LMH6550放大器及ADC12DL065模/数转换器的信号
本文主要介绍输入或接收器路径的设计。发送器或输出路径的设计将会留待以后再详细介绍。典型的接收器或仪表测量系统由信号传感器、模拟信号处理区块、数据转换器、接口及数字处理区块等多个不同环节组成 (参看图 1)。但本文只集中讨论输入路径设计的模拟及混合信号部分。我们必须小心挑选信号路径的各个区块,才可取得预期的成效。      图 1 典型的信号路径   规范系统性能的技术规格   若要系统能充分发挥其性能,系统便必须符合一定的技术规格,例如信号路径所采用的主要元件必须符合有关要求,以便系统可以在性能、功耗、体积及是否容易使用等方面取得最理想的平衡。下文将会分析典型的双信号路径接收器设计的每一个环节 (参
[模拟电子]
LMH6550放大器及ADC12DL065模/数<font color='red'>转换器</font>的信号
基于DPWM的高速高精度积分型模数转换器
提出一种由单电源供电,基于数字脉宽调制(DPWM)原理实现、高速、高精度、积分型模/数转换器的方法。通过对按预置规律变化的脉宽调制信号实施低通滤波后与被测信号比较的方法,实现模/数转换,避免了高精度模/数转换器模拟电路设计的复杂性,并可达到较高的精度。该方法采用快速搜索算法后可进一步提高转换速度,且可方便地由单片机、DSP,FPGA等实现,还可为芯片集成提供有益的方法。 关键词:数字脉宽调制;积分型模/数转换器;可编程门阵列;脉宽调制信号 0 引 言     采用数字信号处理可方便地实现各种先进的自适应算法,完成模拟电路无法实现的功能,因此越来越多的模拟信号处理正在被数字化。目前,应用较多的模/数转换器主要有积分型、逐次逼近型
[电源管理]
基于DPWM的高速高精度积分型模数<font color='red'>转换器</font>
旋转变压器—数字转换器AD2S83在伺服系统中的应用
    摘 要: 介绍了旋转变压器-数字转换器AD2S83在伺服系统中的应用,重点介绍了该器件与主控芯片DSP(TMS320F240)的接口电路设计。     关键词: 伺服系统 旋转变压器-数字转换器           在伺服系统中,需要实时地检测出电机转子的位置,包括转子的绝对位置和增量式位置,同时还需检测出电机的速度,以实现对电机的转矩、速度、及其驱动的机构的位置的高精度控制。     在电机转子位置的检测中,旋转变压器由于其具有坚固耐用,能够提供高精度的位置信息等突出优点,而获得越来越广泛的应用。由于旋转变压器的输出是包含着位置信息的模拟信号,需对其处理并将其转化成对应的包含着位置信息
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved