3V与5V混合系统中逻辑器接口问题解决办法

最新更新时间:2012-04-29来源: OFweek 关键字:混合系统  逻辑器接口  逻辑器件  数字器件 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  近年来,随着便携式数字电子产品笔记本计算机、数字式移动电话、手持式测试仪表等的迅速发展,要求使用体积小、功耗低、电池耗电小的器件,数字系统的工作电压已经从5V降至3V甚至更低(例如2.5V和1.8V标准的引进)。但是目前仍有许多5V电源的逻辑器件和数字器件可用,因此在许多设计中3V(含3.3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用。随着更低电压标准的引进,不同电源电压逻辑器件问的接口问题会在很长一段时间内存在。本文讨论的是使用TTLCMOS的3V和5V系统中逻辑器件间接口的基本概念和电路实例。理解了这些概念可避免不同电压的逻辑器件接口时出现的问题和保证所设计的电路数据传输的可靠性。

  2 逻辑电平不同,接口时出现的问题

  在混合电压系统中,不同电源电压的逻辑器件相互接口时会存在以下3个主要问题:

  加到输入和输出引脚上允许的最大电压的限制问题;

  两个电源间电流的互串问题;

  必须满足的输入转换门限电平问题。

  器件对加到输入脚或输出脚的电压通常是有限制的。这些引脚有二极管或分离元件接到Vcc。如果接入的电压过高,则电流将会通过二极管或分离元件流向电源。例如3V器件的输入端接上5V信号,则5V电源将会向3V电源充电。持续的电流将会损坏二极管和电路元件。

  在等待或掉电方式时,3V电源降落到0V,大电流将流通到地,这使总线上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏。必须注意的是:不管是在3V的工作状态或是0V的等待状态部不允许电流流向Vcc。

  另外用5V的器件来驱动3V的器件有很多不同情况,同样TTL和CMOS间的转换电平也存在不同情况。驱动器必须满足接收器的输入转换电平,并要有足够的容限和保证不损坏电路元件。

  以上问题在详细地分析一些具体电路后便会很清楚。

  3 可用5V容限输入的3V逻辑器件

  3V的逻辑器件可以有5V输入容限的器件是LVC、LVT、ALVT、LCX、LVX、等系列。此外,还有不带总线保持输入的飞利浦ALVC器件也是5V容限。

  3.1 ESD保护电路

  为了说清楚为什么3V器件可以有5V的输入容限,首先介绍逻辑电路输入端的静电放电(ESD)保护电路的工作原理。

  实际上数字电路的所有输入端部有一个静电放电(ESD)保护电路,如图1(a)所示。传统的CMOS电路通过接地的二极管D1、D2对负向高电压限幅而实现保护,正向高电压则由二极管D3钳位。这种电路的缺点是为了防止电流流向Vcc电源,最大的输入电压被限制在Vcc+0.5V。对Vcc为3V的器件来说,当输入端直接与大多数5V器件输出端接口时允许的输入电压会太低。大多数5V系统加到输入端的电压可达3.6V以上。有些3V系统电路可以使用两个MOS场效应管或晶体管T1、T2代替图1(a)中的D1、D2二极管,如图1(b)所示。T1、T2的作用相当于快速齐纳二极管对高电压限幅。由于去掉了接到Vcc的二极管D3,因此最大输入电压不受Vcc的限制。典型情况下,这种电路的击穿电压在7-10V之间,因此可以适合任何5V系统的输入电压。

  

  (a)传统的ESD保护电路,输入电压被限制在Vcc+0.5V

 

  

  (b)改进的ESD保护电路,输入电压不受Vcc限制

  图1 CMOS ESD保护电路

 

  由上分析可知,改进后具有ESD保护电路的3V系统的输入端可以与5V系统的输出端接口。

  3.2总线保持电路

  总线保持电路就是有一个MOS场效应管用作上拉或下拉器件,在输入端浮空(高阻)的情况下保持输入端处于最后有效的逻辑电平。图2(a)中的电路为一LVC器件总线保持电路的例子。在该例子中制造商采取了改进措施而使其输入端具有5V的容限。其基本原理如下:P沟道MOS场效应管T1具有一个内在的寄生二极管,它连接在漏极和衬底之间,通常源极与衬底是连在一起的,这就限制了输入电压不能高于Vcc+0.5V。现在的措施是用常闭接点S1将源极与衬底相连,当输入端电压比Vcc高0.5V时,比较器使S2闭合,S1断开,输入端电流不会通过二极管流向Vcc而使输入具有5V的容限。图2(b)是LVT和ALVT器件总线保持电路的例子。这种电路用了一个串联的肖特基二极管D,这样就消除了从输入到Vcc的电流通路,从而可以承受5V输入电压。对于3V的总线保持LVC、LVT和ALVT系列器件可以承受5V的输入电压。但对于3V的ALVC、VCX等系列器件则不能,它们的输入电压被限制在Vcc+0.5V。

 

  

  (a)在LVC总线保持电路中,当输入电压上升超过Vcc时,比较器使S1开路,消除了至Vcc的电流通路

  

  (b)LVT和ALVT器件,反向偏置的肖特基二极管断开了到Vcc的电流通路

  图2具有总线保持电路的输入端

 

  下面讨论输出端的情况。图3是用于3V CMOS器件的输出电路的简化形式。当输出端电压高于Vcc 0.5V(二极管压降)时,P沟道MOS场效应管T1的内部二极管会形成一条从输出端到Vcc的电流通路。所以这种电路在与5V器件相接时需要加保护电路。

  

  图3简化的CMOS输出级

 

  图4是一种带保护电路的CMOS器件输出电路。当输出端电压高于Vcc时,比较器使S1开路,S2闭合,使电流通路消失,这样在三态方式时就能与5V器件相接。

  

  图4带保护电路的CMOS输出端

  3.3 biCMOS输出电路

  LVT和ALVT器件的biCMOS输出电路如图5所示。它用双极NPN晶体管和CMOS场效应管来获得输出电压摆幅达到电源电压的要求。电流不会通过NPN双极晶体管T1回流到Vcc,但在P沟道MOS场效应管中的内在二极管仍然会形成一条从输出端到Vcc的电流通路(为了简化,图5中没有画出该二极管)。因此这种电路不能接高于Vcc的电压。

 

  

  图5 biCMOS输出电路

  对图5电路所加的保护电路,如图6所示。增加了反向偏置的肖特基二极管D1,用以防止电流从输出端流到Vcc。为了简化,图中没有画出双极晶体管。图6中的输出端与5V驱动器共用一条总线。在三态方式时,电路可以得到保护。当出现总线争夺即两个驱动器部以高电平驱动总线时,比较器将P沟道MOS场效应管T1断开。当3V器件处于等待方式而3V电源为0时,比较器和肖特基二极管D1可以起保护作用。

  

  图6用比较器和反向偏置的肖特基二极管保护3V器件的输出端

  4 3V、5V混合系统中不同电平器件接口的4种情况

  为了保证在混合电压系统中数据交换的可靠性,必须满足输入转换电平的要求,但又不能超过输入电压的限度。图7就是各种转换电平的例子:

  TTL电平输入高电平VIH 2V以上

  输入低电平VIL 0.8V以下。

  CMOS电平VIH为0.7×Vcc以上

  VIL为0.3×Vcc以下。

 

  

  图7 TTL及CMOS器件的转换电平

  例如Vcc为5V±0.5V的系统,CMOS的输入电压VIH至少是3.85V,而VIL必须小于1.35V。在3V/5V混合系统的设计中,必须讨论以下4种信号电平的配置

  5V TTL输出驱动3V TTL输入;

  3V输出驱动5V TTL输入;

  5V CMOS输出驱动3V TTL输入;

  3V输出驱动5V CMOS输入。

  (1)通常,5V TTL器件可以驱动3V TTL输入,因为典型双极晶体管的输出并不能达到电源电压幅度。当一个5V器件的输出为高电平时,内部压降限制了输出电压。典型情况是Vcc-2VBE,即约3.6V。这样工作通常不会引起5V电源的电流流向3V电源。但是,因为驱动器结构会有所不同,因此必须控制驱动器的输出不宜超过3.6V以防万一。

  (2)用3V器件驱动5V TTL的输入端应当是没有困难的。不管是CMOS或biCMOS器件,3V器件实际上能输出3V摆幅的电压。对5V TTL输入的高电平2V门限是容易满足的。

  (3)当用5V CMOS器件来驱动3V TTL输入时,必须小心选择。要选用的3V接收器件应具有5V的容限。

  (4)前面曾谈到3V输出可以驱动5V TTL器件输入,但要注意对5V CMOS器件的输入来说情况却大不一样。应该记住3V输出是不能可靠地驱动5V CMOS输入的。在最坏的情况下,当Vcc=5.5V时所要求的VIH至少是3.85V,而3V器件是不能达到的。

  5 两种电平移位器件

  上面讨论了不同电平器件接口的4种情况,那么对于第4种情况该怎么办?这里介绍两种电平移位器件可以解决类似问题。

  (1)双电源电平移位器74LVC4245

  74LVC4245是一种双电源的电平移位器,如图8所示。5V端用5V电源作为Vcc,而3V端则用3V作为Vcc。它的功能类似于常用的收发器74LVC245,所不同的是用两个电源而不是一个电源。

  74LVC4245的电平移位在其内部进行。双电源能保证两边端口的输出摆幅部能达到满电源幅值,并且有很好的噪声抑制性能。因此该器件用来驱动5V CMOS器件的输入是很理想的。它的缺点是增加了功耗。

  

  图8 74LVC4245电平移位器

  较为简单的一种电平移位器件是74LVC07。它使用一个漏极开路缓冲器去驱动5V CMOS器件的输入,如图9所示。它的输出端由一个上拉电阻R接到5V电源。

 

  

  图9 74LVC07电平移位器

 

  6 结论

  5V器件能和3V甚至更低电压的器件共存于一个系统中。这种情况已经存在并将存在相当长的时间。在设计这种系统时要分析其中逻辑器件的接口问题。其关键是理解和运用以上讨论的基本概念以保证所设计的电路在不同电压器件间数据传输的可靠性。

关键字:混合系统  逻辑器接口  逻辑器件  数字器件 编辑:探路者 引用地址:3V与5V混合系统中逻辑器接口问题解决办法

上一篇:Linux下I2C总线EEPROM驱动程序设计方法
下一篇:运放测试仪的DIY制作

推荐阅读最新更新时间:2023-10-18 16:42

PLC可编程逻辑器件的选择方法
摘要:介绍了在控制系统中选择PLC的一般方法,详细说明了在PLC机型的多样性,以及在PLC的输入输出点数功能等方面作如何选择。 关键词:PLC I/O 选择 开关量 模拟量 数字量 随着PLC的推广普及,PLC产品的种类和数量越来越多,而且功能也日趋完善。近年来,从美国、日本、德国等国引进的PLC产品及国内厂家组装或自行开发的产品已有几十个系列、上百种型号。PLC的品种繁多,其结构型式、性能、容量、指令系统、编程方法、价格等各不相同,适用场合也各有侧重。因此,合理选择PLC,对于提高PLC在控制系统中的应用起着重要作用。 1 机型的选择 PLC机型选择的基本原则是,在功能满足要求的前提下,选择最可靠、维护使用最方便以及性
[应用]
【新车技术】“欧蓝德PHEV”混合动力系统
三菱汽车2012年9月公开了插电混合动力车(PHEV )“欧蓝德PHEV”的混合动力系统(图1)。欧蓝德PHEV计划于2013年初在日本上市。之后将在欧洲及北美推出。 外观。从分解样车的一侧拍摄的照片。 混合动力系统由排量2.0L的汽油发动机、发电机及两个马达构成。虽然可将发动机的动力传输至车轮,但平时只靠用发动机发电的马达来行驶。与已上市的其他公司的PHEV比较时,相比重视发动机驱动力的丰田“普锐斯PHV”,更接近于以马达为主的美国通用汽车的“雪佛莱Volt”,可以说是“增程发动机型纯电动汽车”。   在前方配备发动机兼发动机和马达,在后方配备另一个马达(图2)。其特点之一是:由于前后各配备一
[汽车电子]
【新车技术】“欧蓝德PHEV”<font color='red'>混合</font>动力<font color='red'>系统</font>
CAN总线混合动力汽车电控系统的设计与实现
混合动力汽车是一种由内燃机和电动机混合驱动的汽车,其主要特点是节能、环保。这种汽车在起步时用电动机驱动,消除了内燃机起步时由于燃烧不充分而排黑烟的现象。在汽车减速或刹车时,利用发电机把动能转化成电能,贮存到蓄电池中,实现能量回收达到节能的目的。由于这种汽车是内燃机和电动机两种动力并存,仅用传统的针对内燃机的电控系统无法实现两种动力的最佳配合,因此开发混合动力车的全新电控系统是十分必要的.本文以一种电机并联式混合动力汽车成功实现为背景,从系统角度介绍了混合动力汽车电控系统结构、功能及效果。  并联式混合动力驱动结构简介  并联式混合动力汽车的驱动系统结构见图1。发动机通过机械传动装置与驱动桥连接,电动机通过动力复合装置
[嵌入式]
基于边界扫描技术的混合信号测试系统
分析了用于模数混合电路的边界扫描测试技术的工作机制对测试主控系统的功能需求.提出了一种基于微机的符合IEEEll49.4标准的混合信号边界扫描测试主控系统。所采用的广义特征分析法利用库函数映射的思想,将传统的各种故障字典进行统一描述。实践证明,该方法对模数混合电路的测试是行之有效的。 在所使用的集成电路中,有许多是将模拟信号作为输入,经传感器转变为数字信号进行处理或直接输出,或者以数字信号输入转变为模拟信号输出。这样的数模混合系统的测试涉及模拟信号测试与数字信号测试两个方面,频率覆盖了从几Hz到上GHz的范围,其测试设备非常昂贵,而且缺乏结构化的可测试性设计(Design for Testability,DFT)解决方案。数字
[测试测量]
基于边界扫描技术的<font color='red'>混合</font>信号测试<font color='red'>系统</font>
安世成为分立器件逻辑器件与MOSFETs市场新势力
前身为恩智浦 (NXP) 标准产品业务的Nexperia今天宣布,该公司已正式成为一家独立公司。Nexperia总部位于荷兰奈梅亨,在北京建广资产管理有限公司以及Wise Road Capital LTD(简称:智路资本)联合投资下,拥有前恩智浦部门所累积的专业知识、制造资源和主要员工,并致力于开拓产品新重点的承诺,成为独立的世界级分立器件 (Discrete)、逻辑器件(Logic) 和MOSFETs 领导者。 Nexperia去年生产的元器件数高达850亿,营收超过11亿美元,其业务聚焦在三大趋势上:电源效率、保护和滤波、以及微型化。Nexperia在汽车产业占有优势地位,大部分的Nexperia产品都获得AECQ101认证。
[电源管理]
基于DSP的混合悬浮控制系统的硬件设计
引言   磁悬浮列车是依靠电磁吸力或电动斥力将列车车厢托起悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,具有长寿命、无污染、无噪声、能耗低、不受任何速度限制、安全可靠等优点。而电磁永磁混合悬浮系统可借助永磁体来产生大部分的悬浮力,从而可以减少悬浮系统的功耗,显著降低悬浮电源的容量,并且悬浮气隙可以适当增加,使得整个系统更加安全,轨道梁的造价也将下降。   传统的数字控制器大多采用较高档的单片机来实现复杂的计算和控制,但实时性变差,难以得到较好的动态性能。采用DSP控制,既可以保证计算和控制的实时性,又能充分发挥数字控制的诸多优点。   混合悬
[工业控制]
基于DSP的<font color='red'>混合</font>悬浮控制<font color='red'>系统</font>的硬件设计
标准逻辑器件封装多货源是定时炸弹
  目前,标准逻辑IC仍然广泛用于工业、通信、计算和消费产品中。在从机顶盒或高端服务器到手机的各种产品中,大都可以发现标准逻辑电路的踪影。如果要采用标准元件和定制元件共同来构建一个系统,标准逻辑仍不失为相当具有吸引力的解决方案。处理器和存储器等标准产品往往需结合一定数量的由FPGA实现的定制元件才能够发挥最大效用。当多个信号需要以特殊的方式进行结合时,为了让所有主要系统元件都能够很好地进行协作,并把开发上市时间缩至最短,标准逻辑能够提供成本较低的方法,不必依靠软件或硬件修复就让这些系统元件协同工作。利用标准逻辑还可以提供连接昂贵元件和外部环境的低成本方法,在信号驱动应用中建立高速受控驱动。通常,采用价格较低的元件来保护较昂贵的元件
[模拟电子]
博世开发乘用车液压混合动力系统
    继成功开发电力轴驱混合动力系统,并将其应用于雪铁龙柴油车型之后,全球领先的技术及服务供应商博世计划与标致雪铁龙集团再度携手,共同开发乘用车液压混合动力系统。通过为系统引入两套液压单元和储能器组件,液压混合动力系统可提供三种车辆驱动方式——传统机械驱动、液压驱动、机械与液压共同驱动。在低负荷时,系统可使内燃机以更经济的状态运行;制动时,系统可回收动能并将之转换为液压能储存于储能器,供车辆驱动使用。另外,车辆可以纯液压方式驱动,令短距离行驶不产生任何排放。液压混合动力系统能够令二氧化碳排放量减少30%(欧洲测试循环NEDC),在城市驾驶中,二氧化碳排放量最高可减少45%。     虽然液压混合动力系统初期将应用于紧凑型轿车
[汽车电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved