在负的大电压下检测电流的放大器电路

最新更新时间:2012-05-22来源: 21IC中国电子网关键字:大电压  检测电流  放大器 手机看文章 扫描二维码
随时随地手机看文章

在电信和其它使用高电压负电源轨的场合,可将一个仪表放大器与独立元件简单结合,实现大电流检测以保护电路。高端大电流检测放大器(CSA)主要用于正电源轨电流监测。然而,诸如ISDN和电信电源类应用需要采用工作在负电源轨的CSA。设计负电源轨CSA的一种方法是使用一个精密仪表放大器IC和几个分立元件。

以前有一篇文章讨论了一种类似方法,就是采用一个双电源运放检测-5V电源轨的电流。不过在该文中,设计扩展到了使用了一个工作在单电源轨的放大器IC来检测非常高的负轨电压。本文给出的例子虽是针对-120V电源,但本设计可进行修改,实现对其它电压水平负电压轨的监测。

应用示例

图1为一个典型电话交换机功率分布网络的结构图。一个整流器将主电源的交流电转换成直流电,整流器的直流输出用来给一个48V铅酸电池充电。此电池通过电话线给用户电话供电,因此用户端不必要使用备用电池。

电池极性相连,因此线电压为负(-48V)。线电压为负能降低潮湿电话线的电化学反应腐蚀。电信网络也使用多个直流-直流转换器,从-48V直流输入得到中间电源轨。这些中间电源轨给电话交换机、无线电设备、路由器、ATX计算机及其它电子设备供电。

如果负载电流超过最大额定值,故障状态就会发生,就可能损害电源;因此,需要有输出保护。有一种经过了长时间考验的方法,就是用一个CSA和一个功率晶体管构成电路断路开关。此CSA强化了检测电阻上的小电压降,该检测电阻为外加的,与电池串联。每当电池电流升高到最大额定值时,电路断路开关被触发,最大额定值一般为标称电流的120%~140%。

检测电阻既可置于负载和地之间(低端电流检测),也可放在负载和48V电池负端(高端电流检测)之间。这两种备选方法需要在不同方面作出权衡。低端电阻给对地路径上增加了不期望的电阻。此外,不是所有故障都能用低端方案检测到。

高端或负电源电流检测必须处理大电源及共模信号,但这种方法可以检测到广泛存在的接地面的不引人注意的短路所引起的任何故障。本文论述的CSA采用高端方法。

电路描述

图2的电路为一种实现负电源轨电流检测框图。其中采用了一个仪表放大器,如MAX4460或MAX4208,以及一些分立元件。

[page]MAX4460/MAX4208是采用称作间接电流反馈的一种新颖架构设计的仪表放大器。这种拓扑结构可以使输入共模电压范围包含地(即放大器的负轨),这与传统三运放架构不同。

在间接电流反馈架构中,通过RSENSE的负载电流在仪表放大器的IN+和IN-间产生一差分电压。该差分电压通过跨导放大器gM1转化成内部差分电流。跨导相同的跨导放大器gM2的作用是,通过在一个负反馈环内使用高增益放大器消除掉此内部差分电流。因为跨导匹配,反馈动作重建了引脚FB和GND上的IN+和IN-间的输入差分电压。

MAX4460的输出给MOSFETM1提供合适的栅极驱动。电阻R3上的电压降等于RSENSE上的电压VSENSE。因此,R3设置了一个与负载电流成比例的电流:

MOSFET的额定漏-源极击穿电压必须大于两电源轨间的总电压降(本例中为+125V)。选择R2,使输出电压位于后续电路需要的电压范围之内,后续电路通常为一模数转换器(ADC)。R2和R3设置CSA增益,后面将对此予以说明。如果此ADC输入阻抗不高,可以在VOUT端附加一运放缓冲。

在电信和其它使用高电压负电源轨的场合,可将一个仪表放大器与独立元件简单结合,实现大电流检测以保护电路。高端大电流检测放大器(CSA)主要用于正电源轨电流监测。然而,诸如ISDN和电信电源类应用需要采用工作在负电源轨的CSA。设计负电源轨CSA的一种方法是使用一个精密仪表放大器IC和几个分立元件。

关键字:大电压  检测电流  放大器 编辑:冰封 引用地址:在负的大电压下检测电流的放大器电路

上一篇:IC检测经验总结
下一篇:满足的嵌入式系统电路特性测试需求的JTAG技术

推荐阅读最新更新时间:2023-10-18 16:46

运算放大器功耗与性能的权衡
高性能,低功耗:越来越多的应用需要满足这一需求,尤其是由电池供电的移动设备。特别是在物联网、工业4.0和数字化时代,这些手持设备大大方便了人们的日常生活。从移动生命体征监测到工业环境中的机器和系统监测,很多应用纷纷受益。智能手机和可穿戴设备等终端用户产品也要求更高的性能和更长的电池寿命。 因为提供电源的电池电能有限,所以需要在使用消耗电流最小的元件,以最大限度延长设备的运行时间。或者,通过降低功耗,使低容量电池也可以实现相同的电池寿命,同时减小尺寸、重量和成本。温度管理同样不容忽视。同样,更高效的元件也起积极作用。冷却管理需要占用空间,如果产生的热量减少,占用的空间也会减少。目前,市面上提供多种低功耗,甚至是超低功耗(ULP)
[模拟电子]
运算<font color='red'>放大器</font>功耗与性能的权衡
TI推出业界最高精度的全差动可编程增益放大器
2013 年 10 月 23 日,北京讯日前,德州仪器 (TI) 宣布推出一款全差动零漂移 36V 可编程增益放大器 (PGA)。该款 PGA281 在 5uV 电压下提供同类最低偏移电压,可提高准确度与长期稳定性,并减少未来系统校准需求。且其零漂移架构支持 DC 高精度与长期稳定。设计人员可在工业信号采集应用中使用 PGA281,包括测量测试、应变仪、桥接放大器以及医疗仪表等。    PGA281 的主要特性与优势: 零漂移架构:25 uV 偏移电压与 174 nV/C 偏移电压漂移加上 128 最大增益,可帮助设计人员优化系统性能。偏移电压可在包括时间与温度的各种条件下实现稳定性; 业界最佳
[模拟电子]
运算放大器必知必会:基本特性与设计因素须知
运算放大器是典型的模拟集成电路。可以说有了运算放大器才算有了模拟集成电路、其历史也就是模拟集成电路的历史。运算放大器的设计开发不像其外特性那样直观明了;外特性有细微差异的运算放大器内部差异之巨大也往往出乎意料之外;投入资源开发有细微差异的运放是工程需求、工程需求背后的商业利益追求、以及知识产权创新的需要。这从圣邦微电子公司近年开发的运放产品中可以一窥端倪。   微功耗运算放大器   大幅度地减少功耗对应用设计带来的影响不止是节能。如果平均功率需要从mA量级下降到了μA量级甚至μA以下,则供电方案可以有很大不同,使一些原本不方便、不能实现的应用得以实现。例如图1所示的电源电路可以驱动一个以微功耗运算放大器为检测部分、配合
[模拟电子]
运算<font color='red'>放大器</font>必知必会:基本特性与设计因素须知
新增高电压能力的MAX471/MAX472高侧电流检测放大器
Abstract: An avalanche diode and current source provide a floating power supply to allow high-side current sense amplifiers to work at up to 300V. The MAX471 and MAX472 are complete bi-directional high-side current sense amplifiers for portable PCs, telephones, and other systems where battery/DC line monitoring is imp
[模拟电子]
新增高<font color='red'>电压</font>能力的MAX471/MAX472高侧<font color='red'>电流</font><font color='red'>检测</font><font color='red'>放大器</font>
意法半导体(ST)推出尺寸紧凑的三路输出总线控制式手机音频功率放大器解决方案
单片音频系统在立体声耳机驱动器的基础上增加了扬声器和免提电话输出, 以及 I 2 C 接口和保护功能 中国 ,2006年11月6日 — 全球手机音频解决方案的领导者 意法半导体(纽约证券交易所代码: STM) ,日前推出一个尺寸紧凑的立体声耳机和扬声器二合一的驱动器芯片,新产品内置一个灵活的 I 2 C 总线控制接口,目标应用为手机、 PDA 和笔记本电脑。新产品 TS4956 采用 2.5x2.4mm 倒装片无铅封装,在 3.3V 电源电压下,可以向一个 16 Ω 的耳机负载输入每声道最高 38mW 的连续平均功率,或者向一个 8 Ω 的扬声器负载输入每声道最高 450mW 的连续平均功率
[新品]
法国“小巨人”已解决CMOS击穿难题,手机用CMOS功率放大器将迎来发展新契机
是否有可能为3G手机生产一种CMOS功率放大器(PA),具有和砷化镓(GaAs)PA一样的功率效率和鲁棒性?法国公司ACCO Semiconductor相信,它已找到了通向上述目标的途径,并希望利用它手中的专利应用在这个数十亿美元的市场中大赚一笔。 ACCO自1994年以来一直在RF IC领域从事设计服务。许多打着系统厂商和半导体厂商品牌销售的大量高频芯片,实际上都是由Denis Masliah组织的团队开发出来的。Denis Masliah是ACCO的创建者及首席技术官。 Masliah表示,该公司最近在把CMOS用于功率放大器方面取得“突破”。Masliah找上了英国风险投资公司Pond Venture Partn
[模拟电子]
高保真BTL放大器(TDA2009)
这里介绍一种无需调试、保真度高、成本低廉的BTL功率放大电路,并且可以根据自己的情况选取末级功放集成电路,由于通用性强,给音响爱好者制作带来极大方便。   工作原理   该装置电路工作原理见图1。这里只给出了其中一个通道的电路图,另一个通道完全相同。音频信号从电路的A端输入,经运算放大器IC1放大后(放大倍数由R1、R2决定),一路经IC2作反相放大,其增益为1;另一路经IC3、IC4作两次反相放大,增益仍然为1,其实质是IC3、IC4共同构成增益为1的正相放大器,所以在IC2的B端和IC4的C端得到的是两个大相等而相位相反的音频信号。这两个互为反相的音频信号分别通过R9、C5和R10、C6加到双音频功率放大集成电路IC5
[模拟电子]
高保真BTL<font color='red'>放大器</font>(TDA2009)
ANADIGICS发布新款功率放大器AWM6422,采用InGaP-Plus技术
  宽带无线及有线通讯解决方案供应商ANADIGICS在西班牙巴塞罗纳举行的2008年全球移动大会(Mobile World Congress 2008)上推出其新型AWM6422功率放大器。通过推出工作频段为2.3-2.4GHz(该频段被分配用于宽带移动无线服务)的AWM6422,ANADIGICS壮大了其为WiMAX和WiBro(韩国)系统服务的尖端产品系列。该新型AWM6422正被整合入一种专为一家韩国大型电信公司生产的适配器中。   AWM6422 功率放大器是在 ANADIGICS 去年推出的被广泛接受的 AWM6423 基础上开发的。AWM6422 具有较好的性能,在高水平的输出功率下表现出优异的线性和效率。为处
[手机便携]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved