开关电源产生浪涌电流的原因

最新更新时间:2012-06-06来源: 21IC关键字:开关电源  浪涌电流 手机看文章 扫描二维码
随时随地手机看文章

在各种过去和现在常用的电源中,开关电源是很普及的,一般可以满足任何设计要求。这种电源很经济,但在工业设计中也存在一些问题。这就是很多开关电源(特别是大功率开关电源),都存在一个固有的缺点:在加电瞬间要汲取一个较大的电流。这个浪涌电流可能达到电源静态工作电流的1O倍~100倍。由此,至少有可能产生两个方面的问题。第一,如果直流电源不能供给足够的启动电流,开关电源可能进入一种锁定状态而无法启动;第二,这种浪涌电流可能造成输入电源电压的降低,足以引起使用同一输入电源的其它动力设备瞬间掉电。

传统的输入浪涌电流限制方法是串联负温度系数热敏限流电阻器(NTC),然而这种简单的方法具有很多缺点:如NTC电阻器的限流效果受环境温度影响较大、限流效果在短暂的输入主电网中断(约几百毫秒数量级)时只能部分地达到、NTC电阻器的功率损耗降低了开关电源的转换效率……。其实上面提出的这两个问题可以通过一个“软启动电路”来解决,下面详细介绍之。

1 开关电源浪涌电流产生的原因

开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证二手机器人电源正常而可靠运行。

2 软启动电路电气工作原理

如果采用“软启动电路”来消除开关电源启动时的浪涌电流,可以很好地避免上述传统浪涌电流限制方法的缺点。通过“软启动”来控制开关电源的启动以消除浪涌电流,包含这样两条设计原则:即在加电瞬间除去负载、同时限制有用的电流。如果不驱动负载,开关电源启动时一般电流很小。在很多情况下,启动电流实际有可能要比利用这种方法保持的稳态工作电流小。

关键字:开关电源  浪涌电流 编辑:探路者 引用地址:开关电源产生浪涌电流的原因

上一篇:ups电源产生极板硫酸化的一些特殊原因
下一篇:基于数学优化法的带通滤波器研究

推荐阅读最新更新时间:2023-10-18 16:50

LED开关电源选购技巧
电源选购也有讲究的,不同的电源适用的范围是及其不同的,这和电源所支持的功率和最大承受的负载限制有关。比如说像数据中心等大规模的用电场所,仍然使用我们民用的普通电源,这未免有些不适用。要知道像数据中心这样的用电大户是要有专业的用电标准的,无论是从安全的角度还从用电标准的角度出发,是绝对不可以使用普通民用电源的。 因此根据当今市场的需求,机架式电源分配单元就逐渐地进入了这个市场。在很大程度上安全性确实很高,但它的功能或许有些单一化。说到这里也许有人会这样说,“一个电力分配单元用不着赋予它太多的功能,只要可以保护自己的设备用电安全就可以”。 之前笔者也是这样认为的,但自从接触了安防,就对电源有了新的认识。使笔者没想到的是小小
[电源管理]
示波器的开关电源的操作注意
用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。 (1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。 (2)如果发现波形受外界干扰,可将示波器外壳接地。 (3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。 (4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关。 (5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。 示波器分
[测试测量]
开关电源技术的发展
  开关电源是利用现代电力电子技术,采用功率半导体器件作为开关,通过控制开关晶体管开通和关断的时间比率(占空比),调整输出电压,维持输出稳定的一种电源。早在20世纪80年代计算机电源全面实现了开关电源化,率先完成计算机电源换代,进入90年代开关电源已广泛应用在各种电子、电器设备,程控交换机、通讯、电力检测设备电源和控制设备电源之中。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,两者的成本都随着输出功率的增加而增长,但两者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使的开关电源技术也不断的创新,这一成本反转点日益向低
[电源管理]
电脑用的按钮式顺序开关电源插座电路
电脑用的按钮式顺序开关电源插座电路 其中K1、K2是两只220V交流小型继电器(任何一种型号均可),X1和X2分别是外接设备和计算机的插座。开机时,先按下启动按钮SB1,K1—1吸合,外设插座X1得电;再按下SB2,K2-1吸合,计算机插座得电。显然,本装置只有先按SB1,然后按SB2才有效。不过使用本装置的计算机及外接设备的电源开关事先应处于接通位置,他们的开机由开机按键SB1、SB2完成。 K2吸合后,其常开触点K2—2闭合,将关机按钮SB3短接,因此,关机时,必须先按SB3使K2释放,计算机断电,K2—2断开,再按SB4方可使K1释放,外设断电。由此便达到了先开外设、后开计算机;先关计算机、后关外
[电源管理]
电脑用的按钮式顺序<font color='red'>开关电源</font>插座电路
设计开关电源的一些关键问题
  对于开关电源的噪声,除了芯片本身,Layout的设计最为重要,记录一些相关的技巧。不少关于EMI的观念具有通用性。下面我们谈谈关于开关电源设计的一些关键问题。   AC和DC电流路径   开关电源在导通和关闭两种状态下的电流回路不尽相同,于是在部分支路上会出现阶跃电流(step current)(图1. C),这就是所谓需要关注的AC电流路径。   以PCB走线20nH/inch计算,典型buck converter的AC电流路径上电流变化大约是开关电源关闭转换时负载电流大小的1.2倍,是导通转换时负载电流的80%。高速场效应管的转换时间为30ns,Bipolar的转换时间为70ns;根据V=L*dI/dt,当
[电源管理]
设计<font color='red'>开关电源</font>的一些关键问题
磁性元件,在开关电源中都有哪些损耗?
开关电源磁性元件一般就是指变压器和电感,变压器在开关电源中应用非常广泛。变压器的作用大致是提供初级和次级的电气隔离,使输出电压或升或降,传送能量。电感在开关电源中起着储能和滤波作用。在典型的降压转换中,电感的一端是连接到DC输出电压,另一端通过开关频率切换连接到输入电压或者GND,在开关判断期间对负载提供持续的能量。 通常情况下,磁性元件的损耗占开关电源总损耗的15%左右,了解磁性元件的损耗的组成对提高电源效率具有重要意义。磁性元件上发生的损耗包括铁损和铜损。 铁损 变压器铁损包括磁滞损耗、涡流损耗和剩余损耗。 磁滞损耗 磁畴在电磁磁化作用下发生的转动,其中的弹性转动是储能,将来反向磁化磁能还会释放,但是另一部分刚性摩
[测试测量]
磁性元件,在<font color='red'>开关电源</font>中都有哪些损耗?
功率因数校正控制电流的离线式开关电源设计
离线式开关 电源 通常应用整流桥和输入滤波电容从输入吸收能量,大电容在接近交流输入峰值处充电以给为逆变提供能量的未经调整的BUS提供能量。电容的容量必须足够大,当整流后半期内线电压低于BUS电压时,仅由它向后续提供能量。 不幸的是,有输入滤波电容会导致输入电流波形不在是正弦,而是一很窄的峰值很高的电流波形,输入功率仅有0.5"0.65,严重的畸变导致电网污染。线电流有效值可达两倍相同正弦电流有效值。120V,15A的线路甚至不能在不导致电路断路器动作时提供1Kwde输入功率。而高功率因数校正却能够提供几乎是其两倍的功率,并且损耗很低,因此在许多领域内,高功率因数校正器成为一需求。 本文所述的高PFC放置于输入整流和BUS电容之间,
[电源管理]
ADI最新推出集成式电源管理开关稳压器
    AnalogDevices,Inc.,全球领先的高性能信号处理解决方案供应商,最新推出集成式电源管理开关稳压器系列的最新成员ADP2118DC/DC开关稳压器。这款新型集成式3A、降压型DC/DC同步稳压器包含低导通电阻开关FET(场效应晶体管),可最大限度地提高效率,并集成了内部回路补偿、电源良好指示器、精密使能、跟踪和同步功能,以简化负载点电源系统的设计。ADP2118设计用于支持从医疗设备到通信基础设施设备等多种应用中的高性能信号链负载,这些应用信号链可能包括ADC(模数转换器)、DAC(数模转换器)、精密放大器以及诸如DSP(数字信号处理器)和FPGA(现场可编程门阵列)等其它高性能亚微米IC。     “对于
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved