防止发电机运行中振荡、失步损坏措施

最新更新时间:2012-06-17来源: 21IC关键字:发电机运行  振荡  失步损坏 手机看文章 扫描二维码
随时随地手机看文章

1 严格控制发电机组失磁异步运行的时间和条件。发电机应具有一定的失磁 异步运行能力,能够维持发电机失磁后短时运行,此时必须根据发电机的相关技术要求快速降负荷,如在规定的时间内不能恢复励磁,机组应与系统解列;

2 发电机组的绝缘水平,水轮机发电机各部件的机械强度应满足相关规程要求,转子、机座等均应满足一定的抗振荡、失步能力;

3 有进相运行工况的发电机,其低励限制的定值应在制造厂给定的容许值和保持发电机静稳定的范围内,并定期校验;

4 励磁系统的两路交流控制电源应分别取自不同母线段,保证励磁系统交流供电的可靠性,条件允许可增设励磁系统内部重要电源监视系统;

5 及时更换老化的电子元器件, 微机保护用的开关电源宜在运行后 7—8 年内更换,加强对二次设备的电源模块的维护、试验工作;

6 加强对机组关键的监视点监控,如机组无功、主变无功等所使用的变送器应具有负量程,以便监视其进相深度;

7 在电源电压偏差为+10%——15%、频率偏差为+4%——6%时,励磁控制系统及其继电器、开关等操作系统均能正常工作;

8 发电机失磁后是否允许机组快速减负荷并短时运行,应结合电网和机组实际情况综合考虑。在电网不允许发电机失磁运行时,发电机失磁保护应投跳闸, 失磁保护拒动应立即将发电机解列;

9为防止频率异常时发生电网崩溃事故,发电机组应具备必要的频率异常运行能力。发电机组低频保护定值除应满足水轮机、发电机制造厂有关规定及相关 规程外,还应与电网低频减载定值相协调;

10.根据稳定需要对发电机的失步保护采取设定失步滑及次数,保证机组安全运行;

11 采用快速保护、高速开关、强励、自动电压调整器、微机励磁、快速励磁根据稳定需要对发电机的失步保护采取设定失步滑极次数, 保证机组安全系统等措施,提高系统的稳定,减少系统的振荡和失步事故;

12 单机容量 50MW 及以上水轮发电机组应配置 PSS(电力系统稳定器) ,提高机组及电网的正阻尼,根据机组调度管辖范围由相应调度部门管理;

13 励磁调节器的自动通道发生故障时应及时修复并投入运行。严禁发电机在手动励磁调节(含按发电机或交流励磁机的磁场电流的闭环调节)下长期运行。 在 手动励磁调节运行期间, 在调节发电机的有功负荷时必须先适当调节发电机的无 功负荷,以防止发电机失去静态稳定性;

14 加强对运行人员在发电机失磁、 过励(误强励)及转速下降等情况下的处理方法的培训。运行中的发电机失磁,当达不到失磁保护跳机条件时,机组将进入 异步运行状态时,运行人员应根据相关规程规范退出机组 AGC、 AVC 功能,快速 减负荷,增加无功输出;

15 当系统发身某些重大扰动导致平衡被破坏时,必须立即改变发电机的输出功率,负荷调整应平稳进行,对于无自动调整励磁装置的发电机应尽可能增加励 磁电流,创造恢复同期的条件,对于无自动调整励磁装置的发电机,应降低发电机的有功负荷;

16 当振荡发生后应根据现象准确判断、正确处理

a 如果不是某台发电机失磁引起,则应立即增加发电机的励磁电流,以提高 发电机电动势,增加功率极限,提高发电机稳定性。这是由于励磁电流的增加,使定、转子磁极间的拉力增加,削弱了转子的惯性,在发电机达到平衡点时而拉 入同步。这时,如果发电机励磁系统处在强励状态,1min 内不应干预;

b 如果是由于单机高功率因数引起, 则应降低有功功率, 同时增加励磁电流。 这样既可以降低转子惯性,也由于提高了功率极限而增加了机组稳定运行能力;

c 当振荡是由于系统故障引起时,应立即增加各发电机的励磁电流,并根据 本厂在系统中的地位进行处理。如本厂处于送端,为高频率系统,应降低机组的有功功率;反之本厂处于受端,为低频率系统,应增加有功功率,必要时采取紧急拉路措施以提高频率; d 如果是单机失步引起的振荡,采取上述措施经一定时间仍未进入同步状态时,可根据现场规程规定,将机组与系统解列,或按调度要求将同期的两部分 系统解列;

17 发电机振荡、失步发生后应密切关注转子、定子的发热状况和形变程度,水轮机各部件变形程度,发现异常及时根据现场规程处理、报告;

18 发电机振荡、失步发生后会造成相邻机组的无功、电压变化,甚至造成系统崩溃,事故发生应注意相邻机组的运行工况(温度、电压、电流等);

19 加强发电机励磁系统基建安装、调试试验管理。

关键字:发电机运行  振荡  失步损坏 编辑:探路者 引用地址:防止发电机运行中振荡、失步损坏措施

上一篇:不同变压器油电气性能的对比研究
下一篇:电力系统最优潮流算法研究综述

推荐阅读最新更新时间:2023-10-18 16:52

基于积累型MOS变容管的射频压控振荡器设计
引言 随着移动通信技术的发展,射频(RF)电路的研究引起了广泛的重视。采用标准CMOS工艺实现压控振荡器(VCO),是实现RF CMOS集成收发机的关键。过去的VCO电路大多采用反向偏压的变容二极管作为压控器件,然而在用实际工艺实现电路时,会发现变容二极管的品质因数通常都很小,这将影响到电路的性能。于是,人们便尝试采用其它可以用CMOS工艺实现的器件来代替一般的变容二极管,MOS变容管便应运而生了。 MOS变容管 将MOS晶体管的漏,源和衬底短接便可成为一个简单的MOS电容,其电容值随栅极与衬底之间的电压VBG变化而变化。在PMOS电容中,反型载流子沟道在VBG大于阈值电压绝对值时建立,当VBG远远大于阈
[模拟电子]
压控振荡
压控振荡器
[模拟电子]
压控<font color='red'>振荡</font>器
电流源设计中的运放振荡问题的解决方案
  对于工程师来说,电流源是个不可或缺的仪器,也有很多人想做一个合用的电流源,而应用开源套件,就只是用一整套的PCB,元件,程序等成套产品,参与者只需要将套件的东西焊接好,调试一下就可以了,这里面的技术含量能有多高,而我们能从中学到的技术又能有多少呢?本文只是从讲述原理出发,指导大家做个人人能掌控的电流源。本文主要就是设计到模拟部分的内容,而基本不涉及单片机,希望朋友能够从中学到点知识。   加速补偿--校正Aopen   校正Aopen是补偿的最佳方法,简单的Aopen补偿会起到1/F补偿难以达到的效果,但并非解决一切问题。   如果振荡由于po位于0dB线之上造成,可想到的第一办法是去掉po.   去掉极点作用的基本方法是引入
[电源管理]
电流源设计中的运放<font color='red'>振荡</font>问题的解决方案
567音频译码器构成的双频振荡电路
567为音频译码器,主要用于自动电话系统,识别收到的电话音调。该集成块的核心是一个高可靠性、高精度锁相环。按图示连接方式和使用的元件数值,两个输出信号频率分别为1.5kHz和4kHz。输出频率可变的方波振荡器是比较通用的,但要从同一振荡电路同时获得两个不同频率的方波输出却相当困难。本电路采用集成电路567可实现上述要求。567音频译码器构成的双频振荡电路:
[电源管理]
567音频译码器构成的双频<font color='red'>振荡</font>电路
CMEMS撼动石英晶体振荡器百年“霸业”
台湾一个科学家做了一个实验:他请了50名志愿者看房间内所有蓝色的物体30秒。然后请他们闭上眼睛,问他们看到了多少个红色、绿色和黄色的物体?这下他们都傻眼了,因为他们只专注蓝色的物体,没有注意到其它颜色的物体。 其实,类似的情景在每个人身上几乎都会发生,我们总是习惯性地选择性忽视一些事物。发生在电子工程师身上的最新例证就是,CMEMS可编程振荡器凭借完全集成的、高可靠性的CMEMS(CMOS+MEMS)技术,实现了更小尺寸、更高可靠性、更佳抗老化性以及更高集成度和更短交付周期的单晶片(single-die)振荡器解决方案。然而,在由石英晶体(XO)解决方案垄断上百年的频率控制和定时产品市场中,工程师的惯性思维使得他们很难将目
[嵌入式]
CMEMS撼动石英晶体<font color='red'>振荡</font>器百年“霸业”
PIC单片机RC振荡器的使用及校准方法
在PIC的单片机中有多种型号有内部RC振荡器的功能,从而省去了晶振,不但节省了成本,并且我们还多了两个IO端口可以使用。 但是,由于RC振荡器中电阻、电容的离散性很大,因此,在有内部RC振荡器的单片机中,它的内部RAM中都会有一个名为OSCCAL的校准寄存器,通过置入不同的数值来微调RC振荡器的振荡频率。并且,单片机的程序存储器中,也会有一个特殊的字来储存工厂生产时测得的校准值。下面我以常用的12C508A和12F629为例加以说明。 12C508A的复位矢量是程序的最高字0x1FF,这个字节生产商已经固定的烧写为MOVLW 0xXX,指令执行后,W寄存器中即为校准值XX,当我们需要校准时,那么,在紧接着的地址0x0应该
[单片机]
PIC单片机RC<font color='red'>振荡</font>器的使用及校准方法
MEMS振荡器与石英技术
从简单的精度约30000ppm的RC振荡器,到精度优于0.001ppb的原子钟,有很多满足不同应用要求的时钟选项。多年以来,体声波(BAW)晶体振荡器可用以满足大多数要求,它提供的精度在10ppm范围内。精度低一些的选择,如SAW振荡器、陶瓷振荡器以及IC振荡器,它们各自具有其满足特定需求的优势。   长期以来,石英基器件被作为大多数其他定时器件用来比较的标准。石英作为频率选择与定时器件的稳定、可控的高质量材料的历史得到了广泛认可,并且频率温度响应、老化率以及抖动与相位噪声特性也在业界被详尽记载。      图1 相位噪声图   与基于MEMS的振荡器相关的最新介绍常常伴有一些论断,认为该技术可提供更低的成
[模拟电子]
MEMS<font color='red'>振荡</font>器与石英技术
将精密电位计重复利用为有用的电压源
模拟或混合信号实验室中不能有太多的电压源。简单合适的高精度电压源可在一个运算放大器电路中设定偏置点、通过一个大电阻调整电源的反馈节点,或对ADC进行快速的线性测试。工程师们经常使用直流电源,因为这是他们能找到的唯一电源。许多实验室中缺乏真正的电压校准源。本设计实例描述了重复利用原有的精密电位器的电路。这种电位器能直接读取刻度,并能装到实验室电压箱中。 在图1中的电路中有几种类型的电位计,标准10匝电位计通常有0.1%的线性度,对常见的调整效果很好。但有五十年历史的总阻抗为100 kΩ或更低的Kelvin-Varley分压器可达到10ppm的精度。如果电压源有迹象表明其输出是正确的,会很实用。数字式面板仪表是实现此目标的
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved