微功耗清洁能源存贮系统

最新更新时间:2012-06-23来源: 21IC关键字:微功耗  清洁能源  存贮系统 手机看文章 扫描二维码
随时随地手机看文章

1传统能源存贮系统

传统贮能系统中,DC/DC、AC/DC、DC/AC三种功率变换器都采用PWM脉宽调制技术,无论是电能存贮侧充电功率的获得,还是电能释放侧的并网功率的获得,都采用PWM脉宽调制,电路拓朴有桥式、半桥式、推挽式、正激式、反激式等等,还有Boost、Buck、Cuk等电路形式。其工作方式是,首先把输入直流电压全部变换成高频方波,然后用大电容滤波,变成另一种直流或交流电压。这种方法有以下弊端:

⑴ 采用脉宽调制的方法,高频率、大功率方波的产生过程,也就是强烈EMI干扰产生的过程,大功率直流变换器相当于一个高频功率发射台,可以想见,所产生的干扰何其严重。

⑵ 功率变换过程中,输入功率的全部必须进行实际的功率变换,所有变换的功率必须通过磁芯变压器或电感传递才能到达输出端,损耗大,效率低。

图1是传统能源存贮系统框图,两侧功率总损耗接近30%,对于清洁能源来说,比如光伏发电,其效率本来就很低,好不容易花大成本把太阳能变换成电能,却让电能存贮系统两侧的功率变换器白白浪费了这么多,实在可惜。

2 微功耗清洁能源存贮系统

图1是微功耗清洁能源存贮系统的原理框图,由3部份组成:充电侧的微功耗充电、蓄电池、并网侧的微功耗逆变。微功耗充电包括:产生恒流恒压的直流稳压器、功率因数校正器、无损充电等。微功耗逆变包括:单相或三相逆变器。

在充电侧,可接受来自电网谷电、风力发电的交流电压,也可以接受来自太阳能发电、潮汐发电、地热发电的直流电压。对于交流电压,首先要进行功率因数校正,对于直流电压,要获得恒流、恒压充电功率;在并网侧,要进行单相或三相逆变,由直流变换到交流,然后并入电网;蓄电池可以是锂离子动力蓄电池、千网水平蓄电池、普通铅酸蓄电池、其他类型蓄电池。

 

 

图1 微功耗清洁能源存贮系统框图

微功耗充电,可以接受交流电压,也可以接受直流电压。如果输入交流电压,进入功率因数校正器,如果输入直流电压,进入直流稳压器,产生恒流恒压充电功率。无论输入的是交流电压还是直流电压,都采用无损充电方式。在并网侧,对于单相交流输出,有一个单相直流逆变器,对于三相交流输出,有一个三相直流逆变器。

3直流稳压器

图2是直流稳压器原理电路。设输入电压Vi=10.5V,要求输出电压Vo=12V,该电路产生一个补偿电压Vc=1.5V,叠加在输入电压之上,使得输出电压等于12V。V2是功率MOS管Q2的栅极100kHz的方波驱动信号,V1是输入直流电压。电路启动后,Q2饱和导通,电池电压V1通过Q2的漏源极向电感L1充电,电感电流线性增加,电感中存贮的能量不断增多。与此同时,电容C2上的电压向负载R2放电。半个周期后,Q2截止,存贮在电感L1中的电能通过Q1的体内二极管向电容C1充电。C1上的电压叠加在电池电压V1之上,在向负载电阻R2供电的同时,也向电容C2充电。图2右边是各点电压的仿真波形,从上到下依次是:输出电压Vo、输入电压Vi、补偿电压Vc。从图可以看到,输出电压Vo(12V)是输入电压Vi(10.5V)和补偿电压Vc(1.5V)之和。

 

 

图2 直流稳压器原理电路

功率MOS管Q1没有驱动信号,只利用功率MOS管Q1体内二极管的正向特性,其饱和压降小,通过电流大。

与传统直流功率变换不同的是,在这儿并不是不问青红皂白地行把输入电压全部变换成方波电压,而是根据情况,只把输入电压中的极小部份变换成方波电压。例如:输入电压是10.5V,输出电压是12V,应该在10.5V的输入电压之上补偿1.5V。因此,仅仅只须把这应该补偿的1.5V变换成方波电压即可。图2右边是各点电压的仿真波形,从上到下依次是:输出电压Vo,输入电压Vi,补偿电压Vc 。

图3是引入UC1825的直流稳压器实用电路,在控制芯片UC1825的右边电路与图2完全一样,只是Q1的栅极驱动信号V2换成了UC1825输出信号OUT_A,当负载或输入电压变化时,由UC1825调节脉宽,保持输出电压Vo不变。

 

 

图3 引入UC1825的直流稳压器实用电路

调节UC1825输出信号OUT_A的脉宽来控制输出电压Vo不变,只不过是调节由电感L1而来的极小部份的直流电压,即电容C1上的补偿电压,而绝大部份直流电压,即负载电阻R6上的绝大部份电压是由输入电压直接而来,未经任何功率变换。

图3右边是接UC1825芯片的电压补偿电路各点电压仿真波形,与图2的仿真波形相似。

4 功率因数校正器

功率因数校正器就是直流稳压电路,当输入电压是交流时,就是功率因数校正电路,当输入电压是直流时,就是直流稳压电路,

图4是单相微功耗功率因数校正器的原理电路。把图2直流稳压电路中的电池V2代之以整流后的馒头波电压Vd即可,要使输出电压Vo成为直流电压,必须在馒头波电压Vd之上叠加波形如(1-SinX)的补偿电压。其结果正是我们为之期待的,直流补偿电路对馒头波电压进行补偿的过程,正是功率因数校正的过程。

在此过程中,输入馒头波电压Vd之所以成为直线输出电压Vo,那是因为在其上叠加了补偿电压Vc 。补偿电压Vc是经过功率变换而来,但输入馒头波电压Vd不必经过任何功率变换,直接到达输出端,成为输出功率。这正是微功耗功率因数校正器的最大特点:只要把输入功率中极小部份(补偿电压的获得)进行功率变换,就可以得到全部输出功率,即输入功率中极大部份(整个馒头波电压)既不必进行实际的功率变换,也不必通过磁芯变压器或电感传递,直接到达输出端,成为输出功率。其变换效率可视为100%。

 

 

图4 单相微功耗功率因数校正器

图4电路中,V2是市电,通过由D3-D6组成的整流桥后,成为馒头波电压Vd(即电容C2上的电压),与电容C3并联,馒头波电压补偿的过程与图4直流电压补偿的过程完全相同,图4右边是馒头波电压补偿电路各点电压、电流的仿真波形,从上到下依次是:输入电压Vi、补偿电压Vc、输入电流Ii 。单从几何图形理解,补偿电压Vc是一个倒置的馒头波,把这个倒置的馒头波叠加在一个正向馒头波之上,其结果当然成为一条直线,因为倒置的馒头波和正向馒头波在几何图形上是互补的,这其实是公式Vo=Vi+Vc=SinX+(1-SinX)=1的真谛。

图5是单相微功耗功率因数校正器的实用电路,MOS功率管驱动信号由控制芯片UC1825提供,并不需要UC3854等功率因数校正的专用芯片。

进行微功耗功率因数校正,用不着把输入功率全部变换成方波电压,只需要把输入馒头波电压补偿成直流电压即可。经过电压补偿后的馒头波电压,成为一条直线,意味着与市电所有幅值相对应的所有时刻,输入电流都有机会对滤波电容充电,即都有电流从网侧流出,输入电流自然与输入电压同步。从图6右边最下面的波形可以看出,输入电流波形完全是正弦波。图4的馒头波电压的补偿电路,实际上就是微功率耗功率因数校正器的原理电路。可以看到,功率因数校正电路中,负载电阻R1并联了大电容C3滤波,并不是纯电阻负载。

图5右边是单相微功耗功率因数校正器实用电路各点电压、电流的仿真波形,从上到下依次是:输出电压Vo、输入电压Vi、馒头波电压Vd、补偿电压Vc、输入电流Ii,当把馒头波电压Vd补偿成直流电压以后,输入电流的波形自然成为正弦波波形。

功率因数的定义是[1]:PF=P/S。对于一个封闭系统来说,PF的极大值等于1,因为有功功率P是视在功率S的一部份,而且仅当无功功率等于零的时候,才有S=P,从而PF=1。上述电压补偿电路正是这样一个封闭系统,其中的补偿电压Vc来自馒头波电压Vd。但是,对于一个开放系统,情形就不一样:如果产生补偿电压Vc的功率Pout来自系统外,经电压补偿后,输入电流波形与输入电压波形完全同步,系统从网侧仅吸收有功功率,网侧波形也不发生畸变,无功功率为零,则有P=S,但此时功率因数PF=(P+Pout)/S,显然,此时有PF>1,即功率因数大于100%,此式说明,采用微功耗功率因数校正,PFC可以大于100%。

 

 

图5单相微功耗功率因数校正器

图6电路中,市电进行倍压整流,具有正负对称电压输出,正负对称电压接有对称的功率因数校正电路,以地为对称轴,对称的上下两部份电路都与图5相同,只不过下部份电路中的二极管反向、功率MOS管换成P型器件。上下对称的正负功率因数校正电路各处理10ms的输入电压,互不干扰。图6右边是正负对称电压时输入交流电压、交流电流的仿真波形,输入电流Ii的波形为正弦波,与输入电压完全同步。具有正负对称电压输出的功率因数校正电路,可应用于需要正负对称电路输入的逆变电路。

 

 

图6 单相输入正负对称直流输出功率因数校正电路

图7是采用星形接法的三相微功耗功率因数校正器的实用电路。把图4直流电压补偿电路中的电池V2用星形接法的三相整流后的馒头波电压Vd取代,功率MOS管Q1的驱动信号由芯片UC1825提供,工作原理和单相微功耗功率因数校正器电路完全相同,此处不再重复。

图7右边是各点电压、电流的仿真波形,从上到下依次是:整流电压Vd,输入电流Ia、Ib、Ic。从仿真波形可以看到,图8右边下部份的输入电流仿真波形和图2中间下部份的输入电流的仿真波形完全相同,说明经过三相功率因数校正后,输入电流波形和纯电阻负载时输入电流波形完全相同,亦即说明采用电压补偿电路进行功率因数校正达到了功率因数为1,而总谐波畸变THD为零的效果。必须说明的是,三相微功耗功率因数校正器的负载电阻R2并联有大电容C5,并不是纯电阻负载,但其输入电流的仿真波形,和星形接法三相不控整流的纯电阻负载时的输入电流仿真波形完全一样。

 

 

图7 星形接法的三相功率因数校正电路

5 无损充电机

锂离子动力电池无损充电机采用整体串联恒流、单体并联恒压的充电方法,对电池实现无损充电。无损的含意有两层,一是充电效率接近100%,充电功率基本无损耗,二是充、放电完全依据电池的特性曲线(请参考图1),电池本身在充、放电过程中完全无损害。该无损充电机免除电池管理系统,仅由简单的电路实现电池系统、充电系统、放电系统和维护管理系统的所有功能,无过充、过热、过放、过流、短路现象,充电终了时所有单体电池的端电压完全相等,无须进行均衡充电,同时无易受干扰的复杂控制芯片和软件,安全可靠,简单实用,其成本、体积、重量、功耗都是传统充电机的十分之一。

整体串联恒流充电的含义是:对于电池整体,进行串联充电,充电电源采用恒流恒压直流电源。单体并联恒压控制的含义是:每个单体电池都直接并联一个并联稳压电路,所有并联稳压电路直接串联,可以理解为,对整体电池进行串联恒流充电的同时,也对所有串联的并联电路进行串联恒流充电,串联充电电流是流经电池,还是流经并联稳压电路,取决于电池充电时的实时端电压。并联稳压电路的输出电压调整为电池充电终止电压值3.75V,当某个与之并联的单体电池端电压充电到此电压值时,并联电路启动,串联恒流充电电流流经并联稳压电路,而不再流经电池,该单体电池充电停止,其他单体电池继续进行串联恒流充电,仿佛串联恒流充电对直接串联的整体电池和直接串联的并联稳压电路这两个支路同时进行充电一样,只不过充电的对象由并联稳压电路控制,因而得名单体并联恒压控制。上述整体串联恒流充电、单体并联恒压控制的充电方法,具备串联、并联充电的所有优点,完全免除了串联、并联充电的所有缺点。当充电终了时,所有单体电池的端电压都等于与之并联的并联稳压电路的输出电压设定值3.75V。锂离子单体电池之间,本来在容量、内阻、衰减、自放电等性能上存在差异,经过无损充电后,个体之间的这种差异完全消失,当然再也不会发生过充、过热现象。

图8是无损充电机充电{5}的原理电路,其中E1=2.5V,E2=2.0V是单体锂离子电池,V1是直流恒流恒压电源,由Q1、Q2、D1、R2和Q3、Q4、D2、R3组成2个并联稳压电路Va和Vb,分别和电池E1、E2并联。V1通过电阻R1直接对锂离子电池E1、E2串联充电,当有一个电池,例如E1的端电压充到额定值,即到达并联稳压电路Va设定的稳压值时,齐纳二极管D1开通,并联稳压电路Va启动,串联充电电流流经三极管Q2,不再对E1充电,E1的端电压也不再上升;与此同时,串联充电电流继续对E2充电,直到E2充到额定值时,充电电源V1才断开,串联恒流充电终止。

 

 

图8 整体串联恒流、单体并联恒压充电原理电路图

图8右边分别是锂离子电池E1、E2充电电压的仿真波形,E1从2.5V开始充电,当其端电压充到3.75V后,充电曲线成直线,端电压不再上升,率先进入充满和并联稳压状态,V1继续对E2充电;E2从2.0V开始充电,其端电压充到额定值时,充电曲线也成一直线,和E1的充电曲线重合,因为E2起始充电电压较低,恒流充电时间较长,较后进入充满和并联稳压状态。

图9是无损充电机放电(包括充电)的原理电路,Q5控制充电电源V1的接入和断开,Q6控制电池组的放电全过程。开关S3和S4连同控制边的D3、R6和D5、R8组成两个开关电路SW1和SW2,分别和单体电池E1、E2并联,在放电过程中,E1、E2的端电压总是大于D3、D5的击穿电压,开关S3、S4闭合;同样道理,开关S2的控制边(包括D4、R7)和整个电池组并联,在放电过程中,整个电池组的端电压总是大于D4的击穿电压,开关S2闭合。开关S1的控制边通过电阻R5和开关S2、S3、S4和整个电池组并联,于是开关S1也闭合,驱动电压V2加在Q6的栅源极,Q6导通,电池组向负载R4放电。

在放电过程中,当电池组中有一个单体电池,例如E1的端电压低于额定放电电压,即低于齐纳二极管D3的击穿电压时,S3控制边失电,S3断开,于是S1控制边也失电,S1断开,驱动电压V2加不到Q6的栅极,Q6关断,电池组放电终止。当电池组过放、过流或外部短路时,电池组端电压小于D1的击穿电压,S2控制边失电,S2断开,于是S1控制边也失电,S1断开,驱动电压V2加不到Q6的栅极,Q6关断,电池组停止放电,当过流或外部短路故障解除后,蓄电池组端电压恢复正常,高于D4的击穿电压,S2控制边得电,S2闭合,同时单体电池若无过放电,则S3、S4闭合,于是S1也闭合,V2加到Q6的栅源极,Q6开通,电池组继续对负载放电。

 

 

图9 无损充电机放电原理电路图

单体电池E1,连同与之并联的并联稳压电路Va和开关电路SW1,构成一个基本单元,此基本单元可以任意级联,对任意数目的锂离子动力单体电池组成的电池组进行充放电。

图10是电动轿车96V锂离子动力电池组充电电压的仿真波形,单体电池26个,端电压3.7V,26个单体电池端电压从2V到3.3V不等,依次相差0.05V,充电终了时,每个单体电池端电压完全相等,都等于与每个单体电池并联的稳压电源输出电压的设定值3.75V。单体电池充电终止端电压,等于与其并联的并联稳压电路输出电压的设定值,此设定值可以人为调整,所以单体电池充电终止端电压可以人为控制,电动轿车96V锂离子动力电池组的充电电路参考文献[5]。

电动轿车采用三相电机驱动,则锂离子动力电池组端电压为288V,需3.7V单体电池78个串联,充电电路略显复杂,但由于整个充电电路完全由相同的简单电路级联而成,且无大电流、高电压开关的通断操作,实现起来非常容易,具体电路和仿真波形参考文献[5]{5}。

 

 

图10 电动轿车96V锂离子动力电池组充电电压的仿真波形

6 蓄电池特性的选择

6.1 普通铅酸蓄电池

免维护铅酸蓄电池的结构,由于自身结构上的特点,在使用寿命期间基本不需要补充蒸馏水,具有耐震、耐高温、体积小、自放电小等特点,采用铅钙合金栅架后,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。

因此,免维护铅酸蓄电池相对于一般蓄电池有非常大的优势,但在使用过程中会发生减液现象,这是因为栅架上的锑会污染负极板上的海绵状纯铅,完全充电后蓄电池内的反电动势,造成水的过度分解,大量氧气和氢气分别从正负极板上逸出,使电解液减少。由于其结构上的原因,正常使用中,只能以3C以下倍率充电、放电,其比能量、比功率、循环寿命等难以适应电动汽车、智能电网、清洁能源系统储能等领域的时代要求。

6.2 锂离子动力蓄电池

锂离子蓄电池对充放电的要求,与铅酸等可逆电化学反应类蓄电池完全不同。由于锂离子蓄电池成组应用技术、系统集成关键技术和关键零部件及产品研究,严重滞后于锂离子蓄电池的发展,电池成组后发生过充电、过放电、超温和过流等问题,致使成组锂离子蓄电池使用寿命大幅缩短,安全性大幅下降,甚至发生燃烧、爆炸等恶性事故,已经成为制约锂离子蓄电池产业发展的主要问题,也是当前节能与新能源汽车产业发展的技术瓶颈。

我国电动汽车技术发展到今天,在车用动力电池、电机、电传动等领域,已经取得了一批不错的成果。车用动力电池技术虽然还不是很成熟,但发展的速度与发达国家相比并不算慢。对电池单体进行测量时,显示出的各项指标基本达到设计要求。但是,真正集成为一个动力总成,或者集成到整车上的时候,却发现与单体测量时的情况有很大出入。车用动力电池总成并非将一个个单体电池串联或并联在一起就行了那么简单。将数10个甚至上百个电池集成在一起,并将它们集成到车上,在世界范围内都是一项高新技术,绝不是看起来那么容易的事情,有能力解决这一难题的单位或个人也不是太多。锂离子蓄电池系统主要包括电池系统、充电系统、放电系统和维护管理系统,是一个函括多个技术领域和行业的高技术集成系统{6}。

综上所述,就目前电力电子技术而论,锂离子动力电池的应用仍处于研发阶段,还没有形成一个商业运营的系统,在可预见的将来,也不可能形成市场。

6.3 千网水平蓄电池

鉴于世界能源危机即将来临,鉴于千网水平蓄电池相对于传统蓄电池的强大优势,鉴于锂离子动力电池应用技术的研究现状,现在正是千网水平蓄电池异军突起的大好时机。全世界生产千网水平蓄电池只有两个地方,一个在美国,一个在包头,但市场需求却是无限的,电动汽车动力、智能电网贮能、清洁能源系统贮能等等,这些都关系到一个国家的战略、命运、未来,千网水平蓄电池能在包头落地生根,则中国幸甚,人民幸甚。

表1 千网水平电池与传统电池比较

千网水平蓄电池具有以下的优势。

⑴ 因为极板采用水平放置,可以避免电池的电解液浓度差的极化现象,而电解液浓度差的极化现象是传统铅蓄电池容量下降及寿命缩短的主要原因之一。

⑵ 极板阴阳直接连通,因此内阻小,极板活物质利用比较均匀,且节省极群并联铅材,大电流放电,电压降比较小。

⑶ 采用铅网替代传统的栅板﹝grid﹞,减轻电池重量节省耗材,让电池的重量比能量大为提高﹝≧40wh/kg﹞,同时电池的充电接受率也提高,因此有利于快速充电。

⑷ 因为铅网抗拉强度大,能耐充放电循环中极板活物质的形状变化,因此循环寿命次数也相对提高。

⑸ Horizon使用专有的材料与制造设备,可快速的连续性生产Horizon高功率环保铅酸电池,从包铅、织网至组装成品约仅需4h,最后化成充电时间约3d。而传统电池的制造时间必需耗费7d,最后化成最长需15d时间。

⑹ 本产品过去经过多个独立单位测试,其整个电池的生产技术及表现应无问题。唯公司导入自动化量产设备,设厂后仍然需要时间调整以提高效率。

⑺ 产品环保。采用玻璃纤维复合材料板栅极大地降低了电池极板的重量,比普通铅酸蓄电池轻约30%。

⑻ 生产环保。水平电池采用的复合玻璃铅丝挤压成型和编织工艺,过程中没有铅蒸汽产生;采用完全的内化成,避免了外化成酸雾的产生;整条生产线在封闭环境内,生产线空气经过严格高效的净化处理,极板干燥所产生以及冲洗设备产生的废水都经中和、沉淀、过滤净化后循环使用,对环境没有污染。

⑼ 千网水平电池的制程本身完全可回收,以目前工厂的报废品也都可以回收。

⑽ 1颗高功率环保铅酸电池可抵4颗 Group 31 传统电池,可减少卡车重量负荷 200 P以上,重量减轻可减少燃油耗损、提高启动能力的可靠性并增加负载能力。

⑾ 电池具备质量轻、高电流容量、深度放电及快速充电特性。

7 直流逆变器

直流逆变器采用简单的电容网络,实现了直流电压的逆变。其最大特点是,电路简单,所有器件工作在工频,不产生EMI干扰,因此,功耗极小而寿命极长,安全可靠,节能环保,成本低,制作安装容易。

7.1 直流逆变器工作原理

图11是微功耗直流逆变器工作原理示意图,工作过程如下。

⑴ 正弦波前10ms面积沿Y轴N等分,此处以4等分为例。

⑵ 每个等分以下底为一边作4个长方形,堆累成塔形如图示。

⑶ 利用电容网络由输入直流电压产生塔形波,这是实施直流逆变的第一步。

⑷ 用正弦波从内部切割此塔形,正弦波的幅值选择原则,是使得正弦波在内部刚好和塔形波的直角边相切。

⑸ 塔形波被切去多余部份后的实体正弦波,刚好是输出的正弦波电压Va。

⑹ 塔形波切下来的多余部份打散、揉合,变换成正弦波电压Vb,与前述Va同时输出,产生输出电压Vo的前10ms波形。

⑺ 正弦波后10ms处理方法同上,产生输出电压Vo的后10ms波形。

 

 

图11 直流逆变器工作原理示意图

7.2 四阶塔形波产生电路

塔形波产生电路,实际上是一个电容升压网络,图12是4阶塔形波产生电路,为了简化说明,以电源V3、V5、V7、V9、V11、V13、V15、V17代表网络电容上的电压。图12中,MOS管Q4、Q6、Q8、Q10等组成4阶电容网络的正臂,MOS管Q2、Q5、Q7、Q9等组成4阶电容网络的负臂,其中Q6、Q5、V7、V9、D3、D4组成了电容网络的一阶,从下到上阶数递增。有关电容升压网络,参考文献[4]、[5]。

 

 

图12 塔形波(4阶)产生电路

前10ms,电容网络的正臂启动,各阶MOS管栅极驱动信号导通时间随阶数增加按每次2ms递减,各阶MOS管栅极驱动信号延时时间按每次1ms递增,第一阶MOS管Q10的驱动信号V16的导通时间为10ms,延时时间为0ms,依此类推。Q1、Q3栅极所加驱动信号是周期20ms的等幅方波电压,前10ms期间,Q1饱和导通。在V16高电平期间(脉宽10ms,延时0ms),Q10饱和导通,V15上的电压通过Q10的漏源极、D2、Q1的漏源极,在负载电阻R1上产生持续时间10ms、幅值为V15的方形电压S1;在V12高电平期间(脉宽8ms,延时1ms),Q8饱和导通,V11上的电压通过Q8的漏源极、D6、Q1的漏源极,在负载电阻R1上产生持续时间8ms、幅值为V11的方形电压S2,S2左右对称地堆在S1之上;在V8高电平期间(脉宽6ms,延时2ms),Q6饱和导通,V7上的电压通过Q6的漏源极、D3、Q1的漏源极,在负载电阻R1上产生持续时间6ms、幅值为V7的方形电压S3,S3左右对称地堆在S2之上;在V4高电平期间(脉宽4ms,延时3ms),Q4饱和导通,V3上的电压通过Q4的漏源极、D1、Q1的漏源极,在负载电阻R1上产生持续时间4ms、幅值为V3的方形电压S4,S4左右对称地堆在S3之上;在前10ms到来的最后时刻,在负载电阻R1上形成S1在下、S4在上、持续时间递减的宝塔波电压。

后10ms期间,电容网络的负臂启动,同样道理,在负载电阻R1上形成S1在上、S4在下、持续时间递减的负方向宝塔波电压。20ms到来的最后时刻,在电阻R1上形成了一个完整的宝塔波电压,图12右边是所产生的宝塔波电压的仿真波形。

7.3 宝塔波驱动信号产生电路

图13是16阶微功耗微分逆变器驱动信号的实际电路,电路由4片16个LM339比较器组成,参考电压V2是直流电压,阻值相同的16个电阻串联后与V2并联,16个比较器的反相端顺序、依次接在串联电阻上,第1个比较器接1个电阻,第2个比较器接2个电阻,余类推如图8。另有交流参考电压V1,全波整流后直接接到每一个比较器的同相输入端,同时设交流、直流参考电压V1、V2的幅值都是16V。

 

 

图13逆变器(16阶)宝塔波电压驱动信号实际电路

前10ms,当交流参考电压V1的幅值小于1V时,没有一个比较器的同相端电压大于反相端电压,所有比较器都输出低电平。当V1的幅值大于等于1V时,第1个比较器的同相端电压大于其反相端电压,输出高电平。当V1的幅值大于等于2V时,第2个比较器的同相端电压大于其反相端电压,输出高电平,其余类推。当最后一个,即第16个比较器输出高电平以后,交流参考电压V1将到达极值,随着时间的推移,V1将下降。当交流参考电压V1的幅值下降到小于16V时,第16个比较器的同相端电压小于其反相端电压,其输出端电压产生负跳变,电压由高变低,产生了第1个、也是持续时间最短的脉冲信号。当交流参考电压V1的幅值下降到小于15V时,第15个比较器的同相端电压小于其反相端电压,其输出端电压产生负跳变,电压由高变低,产生了第2个脉冲信号,其余类推。当交流参考电压V1的幅值下降到小于1V时,第1个比较器的同相端电压小于其反相端电压,其输出端电压产生负跳变,电压由高变低,产生了第16个、也是最后1个、同时是持续时间最长的脉冲信号。当第二个10ms到来的时候,重复上述工作过程。所产生的16个持续时间由短到长的脉冲驱动信号,也就是形成宝塔电压的各个微分电压,参考图14的仿真波形。

 

 

图14 逆变器(16阶)宝塔波电压驱动信号仿真波形

显然,交流参考电压V1的频率决定了所产生的脉冲信号的持续时间,即决定了微分逆变器输出交流电压的频率,而参考电压V1、V2的幅值决定了所产生的脉冲信号的高度,即决定了微分逆变器输出交流电压的幅值,V1的频率和V1、V2幅值是可以任意调节的,所以,微分逆变器输出交流电压的频率和幅值也是可以任意调节的。

图15是微功耗直流逆变器(8阶)输出电压仿真波形,左边是输出正弦波电压Vo,右边是宝塔波的切割过程。从图可以看到,当宝塔波的阶数N增加时,例如N=8,所产生的宝塔波非常接近正弦波,可以省去电压切割这一环节。

 

 

图15 直流逆变器(8阶)输出电压仿真波形

由图15右边仿真波形可以看出,从宝塔波切割下来的边角料,随着阶数N的增加,总面积越来越小,这是因为宝塔波可以看成纵轴上的N个微分叠加而成,当N趋于无穷大时,宝塔波趋于正弦波,这时候,用正弦波切割宝塔波,切下来的边角料总面积等于零。

一般多电平FBI逆变器[1],例如三电平逆变、五电平逆变,七电平逆变等,增加输出电压电平数N的目的,是为了减少输出电压波形中的谐波含量,但所需功率器件和电路复杂性呈指数增加,必须要有N个隔离的、独立的电压源,而且每个FBI中功率器件的驱动信号也是隔离的、独立的。三相二电平逆变,功率器件6个,三相三电平逆变,功率器件12个,三相五电平逆变,功率器件24个。如果要实现16电平逆变,所需功率器件P=2N=216=65536,需要隔离的、独立的驱动信号65536个,这种纸上谈兵的逆变电路,在实际上是完全不可能实现的。所有有关逆变器的教科书都提及多电平逆变,但没有哪一本教科书能画出五电平以上逆变器的实际电路,因为太复杂,画也画不出来,怎么能实际做出来。

SPWM全桥逆变电路(FBI),不仅仅是功率器件呈指数增加的问题,更要命的是,在进行多电平叠加的同时,还要在每一个电平中进行SPWM脉宽调制,一个FBI的SPWM控制已经够复杂,现在要对多达2N=65536个SPWM驱动信号进行控制,其空间矢量的复杂程度,是不可想像的。

微功耗直流耗逆变器所需功率器件和电路复杂性呈线性增加,即所需功率器件P=2N,其中N为电平数。图4是4电平微功耗直流逆变器的实际电路,所需功率器件P=2N=2*4=8,实现16电平逆变器,所需功率器件P=2N=2*16=32,限于文章篇幅,本处不宜画完整电路图,仅在图13画出了微功耗直流逆变器(16阶)宝塔波电压驱动信号产生电路及图14的宝塔波电压驱动信号仿真波形,16电平微功耗直流逆变器的完整电路请参考文献[3]。

图16是直流逆变器(16阶)宝塔波电压仿真波形,图中曲线可以看到,N=16的宝塔波已经趋近正弦波,根本用不着进行电压切割。

 

 

图16 直流逆变器(16阶)输出电压仿真波形

7.4电压切割电路

用正弦波波形切割宝塔波,设切去正弦波后剩下来的部份面积为S0,当宝塔波的阶数N=1时,S0=A(1-SinX),其中A是输入电压的幅值,根据计算,这部份面积占总面积的36%。当宝塔波的阶数N=16,或大于某个正整数时,宝塔波已经趋近正弦波,根本用不着进行电压切割。当阶数N在1和某个正整数之间时,切割下来的面积S0所代表的功率比较可观,必须通过功率变换,或反馈,或输出,提高整机效率。

图17是电压切割电路[2][4],功率MOS管Q5、Q6和磁芯变压器TX1组成了主电路,100kHz的方波驱动信号V1、V5分别加在Q5、Q6的栅极,V2是输入正弦波电压Vi,Vi为幅值360V的正弦波电压,负载R6接在Q6的源极。

输入电压的正半周,当驱动方波电压V5为高电平时,Q6饱和导通,输入电压Vi通过Q5的体内二极管和Q6的漏源极,加在负载电阻R5和变压器TX1的原边;在输入电压的负半周,当驱动方波电压V1为高电平时,Q5饱和导通,输入电压Vi通过Q6的体内二极管和Q5的漏源极,加在负载电阻R5和变压器TX1的原边。适当选择变压器原边的电感量和驱动信号V1、V5的脉宽,可便负载电阻R5上的电压为输出额定值。

变压器TX1的附边接有由Q1-Q4组成的动态整流电路[1],可将TX1付边产生的包络为正弦波的双边带方波电压Vs整流为正弦波电压,适当选择TX1的变比和驱动信号V1、V5的脉宽,可使得动态整流电路输出的正弦波电压(由Q3、Q4的源极取出)为额定输出电压,此电压与输入电压同频、同相、同步,与电阻R5产生的额定电压同频、同相,同幅,共同形成输出电压Vo。由于整机不采用铁芯,并不利用磁饱和现象稳定交流电压,因而不会产生正弦波波形失真,有关动态整流的论述请参考文献[2]。

图17右边是切割电路各点电压的仿真波形,最外层是幅值360V的输入电压Vi,下面是电阻R5上被切去头部后的输入电压和TX1付边产生的动态整流电压共同形成的输出电压Vo,最里层是变压器原边产生的包络为正弦波的双边带方波电压Vp,付边电压Vs由TX1的变比决定,是Vp的n倍。

 

 

图17 电压切割电路

8 微功耗清洁能源存贮系统实际电路

图18是微功耗清洁能源存贮系统实际电路,其中充电恒流、恒压电源由Q3、Q8等组成的正负整流升压器完成,蓄电池充电部份由Q1、Q2和Q19、Q20等组成无损充电机完成,逆变部份由Q12、Q13、Q14、Q16、Q17、Q18等组成的三相微分逆变器完成。

 

 

图18 微功耗清洁能源存贮系统实际电路

单相交流电压V4以倍压整流方式进入A、B两点,正负对称整流升压器完成正负直流电压的升压、稳定、恒流、恒压,输入直流电压的稳定和升压,前已详述。恒流功能是检测电阻R11上的直流电压完成的,根据输入正负对称直流电压的高低,选择最佳充电电池的个数N。选择的原则,是使得N个蓄电池的端电压等于或高于输入直流电压,这样整流升压器可以根据电阻R11上的直流电压调整充电流电流达恒定值,如果N个蓄电池的端电压低于输入直流电压,则充电电流将会失去控制。恒压功能是检测C、D两点的直流电压完成的,根据各种蓄电池不同的端电压,确定恒流转恒压、恒压充电的转折点,根据输入正负对称直流电压的高低,选择最佳充电电池的个数N,选择的原则与上述恒流的情况相同。

图18所示输入电压是单相倍压整流电路,正负对称310V,如果是正负对称直流电压,直接接入A、B两点,如果是三相交流电压,以双半波整流方式接入A、B两点。

整流升压电路产生的恒流、恒压电源直接进入由Q1、Q2和Q19、Q20组成的无损充电部份,由Q12、Q13、Q14、Q16、Q17、Q18等组成的三相微分逆变器从E、F两点获得电池正负对称直流电压,这里宝塔波产生电路和电压切割电路省略,无损充电、逆变原理已于前述。

9 结语

采用PWM脉宽调制、以磁芯变压器或电感传递功率、对电网产生强烈污染为其主特征的一切功率变换器,统称为传统功率变换器,与传统功率变换器相对应的是微功耗功率变换器,或称绿色功率变换器,微功耗功率变换器采用的是微功耗电力电子变换技术。

微功耗电力电子变换技术,把与输入总功率有固定比例的损耗降至最低,只要把输入功率中极小部份进行功率变换,就可以得到全部输出功率,即输入功率中极大部份既不必进行实际的功率变换,也不必通过磁芯变压器或电感传递,直接到达输出端,成为输出功率,器件都工作在工频,不产生EMI干扰,因此功耗极小而寿命极长。这里的所有功率损耗,只与极小部份的输入功率有关,而与输入总功率无关,例如功率器件的饱和、截止的静态损耗、高频开关过程的动态损耗、磁芯变压器或电感的传递损耗等等,都只与极小部份输入功率有关,绝大部份输入功率直接到达输出端,成为输出功率。

参考文献

[1] 周志敏. 周纪海. 纪爱华. 开关电源功率因数校正电路设计与应用. 人民邮电出版社. 2004年11月.

[2] 李嘉明. 郁百超. 锂离子动力电池无损充电机. 化学与物理电源系统. 2010年9/10.

[3] 郁百超. 百超功率变换器的原理和应用. 中国电源学会第18届学术年会论文集P301.

[4] 专利文献. 微功耗功率因数校正器. 专利申请号: 201110166360.5. 2011年6月13日

[5] 专利文献. 微功耗直流逆变器. 专利申请号: 201110166349.9. 2011年6月13日

[6] 专利文献. 微功耗清洁能源存贮系统. 专利申请号: 201110179557.2. 2011年6月29日

[7] 专利文献. 绿色功率变换器. 专利申请号: 201010130192.X. 2010年3月19日

[8] 刘凤君. 现代逆变技术及应用.电子工业出版社. 2006年9月.■

关键字:微功耗  清洁能源  存贮系统 编辑:探路者 引用地址:微功耗清洁能源存贮系统

上一篇:与电磁兼容(EMC)有关的IEC标准
下一篇:你不知道的土豆在电源领域的作用

推荐阅读最新更新时间:2023-10-18 16:53

基于单片机平台的电池供电设备的功耗设计
对于大部分单片机系统,由于单片机的运行速度很快,单片机在工作的过程中有大量的空闲等待时间。在某些情况下,系统的等待时间甚至可以达到总工作时间的95%以上。在等待过程中,单片机不作任何工作,只是在踏步等待,或者在循环判断有无新的外部请求。在这个过程中,可以让单片机内部的大部分电路工作在休眠状态,可以大大地降低单片机的功耗。同时,也可以让有关的外部电路工作在休眠状态,这样就使整个产品的供电大大降低。产品的这种非连续工作的特点是微功耗设计的基本思路,此外,还要根据产品的特点醉意更多的设计细节。   选择合适的CPU芯片是微功耗设计的关键   目前的单片机种类很多,而且大都针对某一个特定的应用,可根据具体应用情况选择合适的
[单片机]
基于MSp430的功耗数据采集系统的开发应用
0 引言 以电池作为电源的水下数据采集系统,若要长时间工作必然要为其配备大量的电池作为电源,如果能降低系统的功耗,那么将减少电池的数量,不仅能降低系统的成本而且能大大缩小系统的体积和重量,也更有利于水下数据采集系统的布放。本文介绍了一种基于微功耗单片机MSP430F1611和CF卡的水下微功耗数据采集系统的设计与实现,总功率仅150mW。相比传统的以DSP为处理器、IDE硬盘为存储介质的数据采集系统,功耗大大降低。 1 系统总体构成 本系统是应用在矢量水听器噪声测量试验中,要求实时采集并存储矢量水听器4通道信号,每通道采样率为10kHz,在水下不间断工作7小时。 鉴于本系统采样率不高,7个小时总的数据量不超过2个G,所以没
[单片机]
基于MSp430的<font color='red'>微</font><font color='red'>功耗</font>数据采集<font color='red'>系统</font>的开发应用
意法半导体推出封装面积不足1mm2 的功耗轨对轨比较器
中国,2016年11月2日 横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)新款的TS985比较器兼备微功耗性能、宽动态范围和高翻转速度,且能够压缩在一个面积不足1mm2的微型封装内。 新产品采用0.8mm x 1.2mm x 0.52mm芯片级封装(CSP),最适合空间受限的应用,例如智能手机、数码相机、物联网(IoT)设备和便携测试仪器。 TS985的最低工作电压1.8V,可用于单电池供电系统或者常见的低电压系统,以节省总体功耗。典型工作电流14 A,还有助于降低电池耗电量。300Ns典型传播延迟确保比较器对快速变
[模拟电子]
意法半导体推出封装面积不足1mm2 的<font color='red'>微</font><font color='red'>功耗</font>轨对轨比较器
河南电力:建设监控平台保障清洁能源就地最大消纳
中国储能网讯: 3月4日,在河南兰考能源互联网运营指挥中心监控大屏上,各项新能源数据实时更新,全县能源生产消费现状一览无余。该中心是国网河南省电力公司贯彻绿色发展理念,建设运营兰考能源互联网平台,促进能源绿色低碳转型的成果之一。 河南电力在助力“双碳”目标上率先行动,作为唯一企业代表纳入河南省委省政府“双碳”工作领导小组,“引电、扩新”等主要观点和研究成果在全省绿色低碳转型战略中得到充分体现,目前服务新能源装机达到3633万千瓦、成为全省第二大电源;外电引入规模屡创新高,2021年达715亿千瓦时,占比超过全省用电量的1/5。 河南电力围绕兰考全国首个农村能源革命试点示范县建设,全力打造兰考能源互联网平台,
[新能源]
高精度功耗数据采集系统设计与应用
    摘要: 高精度微功耗数据采集系统的设计原理,叙述了其关键芯片ADS1212的结构和原理以及使用方法,给出了详细的设计电路图和程序片段。     关键词: 高精度 微功耗 ADS1212 数据采集系统 对于水下弱磁信号的检测和处理,需要一个能连续工作几个月甚至一年以上的采样精度很高的数据采集处理系统,这就要求该系统必须具有高精度微功耗的功能。本文所介绍的就是能满足这一要求的数据采集系统,它在笔者的工作中已经得到了充分的应用和试验。该系统采用ADS1212作为模/数转换器,它是一个具有高精度、宽动态特性的 Δ- ∑型A/D芯片。下面先对该芯片的主要特点和用法进行简要介绍,随后介绍ADS1212与微功耗
[工业控制]
设计基于MSP430单片机的功耗中文人机界面
在现代便携式智能仪器或手持设备中,中文人机界面成为一种事实上的行业标准。能显示汉字的图形点阵液晶和可输入数字的小键盘已成为智能设备必不可少的组成部分。同时作为便携式设备基本要求的低功耗特性也贯穿于中文人机界面的设计始终。 这种低功耗中文人机交互界面需要设计者在选取MCU和具体元器件上有特殊考虑。微功耗、小体积应作为选择相关器件的首要要求。 设计中,笔者采用MSP430F149单片机作为系统的MCU,通过选择合适的液晶显示模块在3V电平构建了一个低功耗的中文人机界面。此中文人机界面构成了微功耗数据采集系统的重要组成部分。 一、MSP430系列FLASH型单片机的微功耗特点 德州仪器公司(TI)推出的MSP43
[单片机]
设计基于MSP430单片机的<font color='red'>微</font><font color='red'>功耗</font>中文人机界面
木兰县首个清洁能源项目奠基
7日,木兰工业园区内鞭炮齐鸣、彩旗飘飘,投资3.1亿元的中船风电木兰县新型储能产业基地动工奠基,木兰县首个清洁能源装备厂成功落地,吹响绿色低碳发展冲锋号。该项目实施单位为中国船舶集团风电发展有限公司,项目旨在贯彻落实国家关于碳达峰、碳中和重大决策部署 ...
[新能源]
具有125kSPS采样率的2通道功耗12位ADC
    摘要: AD7887是一种可工作在2.7V~5.25V单一电源下的12位ADC,它具有125kSPS的吞吐率。其特点是高速、低功率,并具有多种工作模式供选择,可灵活选择电源管理模式,是目前体积最小的12位ADC。文中介绍了AD7887的功能、原理及应用电路。     关键词: ADC 单/双通道 吞吐率 AD7887 1 概述 AD7887是一种可工作在2.7~5.25V单一电源下的高速、低功率12位ADC,具有125kSPS的吞吐率。其输入端相当于一个采样周期为500ns的单端采样器,任何信号经转换后可以二进制编码形式由输出端输出。AD7887具有单/双通道两种工作模式和灵活的电源管理模式,并
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved