能源转换效率最佳的碳纳米管光电化学太阳能电池

最新更新时间:2012-06-24来源: 电子发烧友关键字:能源转换  碳纳米管  光电化学 手机看文章 扫描二维码
随时随地手机看文章
  •   布满磷脂盘状物(phospholipid disks)的碳纳米管,能让太阳能电池具备自我修复(self-repairing)的功能,就像是植物行光合作用。这种光电化学(photoelectrochemical)太阳能电池是由美国麻省理工学院(MIT)的研究人员所开发,其能源转换效率号称可达到目前效能最佳之固态太阳能光电板的两倍。

      以人工方式进行的太阳能转换,以及自然界的太阳能转换,两者间的主要不同之处,在于工程师会为太阳能电池做防护,以避免固态无机材料的逐渐劣化;而自然界的太阳能转换,是通过光合作用,来预防并修复不可避免的液态有机材料损坏。

      在自然界,使用永续性太阳能的案例不胜枚举;举例来说,能让树叶进行光合作用的有机化合物,经常会受到阳光的损坏,但树叶有自我修复机制。通过对能够不断更新其太阳能转换燃料机制的生物性光合作用过程之研究,科学家们现在已经有自信能制作出模仿该种自我修复能力的太阳能电池。

      MIT的研究人员并没有声称已经破解光合作用的秘密,但表示已能够模仿植物的自我修复机制,不断充实其能量采集技术。

      光合作用过程包含一些内建的机制,植物内部以化学为基础的动力引擎,会周期性地分解为基本的功能区块(building blocks),然后那些更新过的元素会再重组成全新的引擎。根据MIT教授Michael Strano的说法,植物会每个小时执行以上的程序,更新并循环其基于蛋白质的光合作用功能,使其以最佳效率持续运作。

      Strano所开发的方案,具备一种会模仿光合作用程序可逆性、叫做磷脂的合成性盘状分子,该种分子每一个都具备能将光线转换成电流的内部反应中心;当把该种分子与碳纳米管混合到溶液中,盘状分子会围绕着碳纳米管自我组装。由于碳的导电性比金属好,当曝露在阳光下时,奈米管会提高释入盘状分子的电子之传输率。

      而在盘状分子的内部,Strano的团队利用了会自我组装成光线采集器的、由七种不同元素组成的化合物,建立了类似光合作用的循环性机制。通过添加一类似除油剂的接口活性剂,所有化合物组合会裂解为原来的元素;若再用过滤器将溶液中的接口活性剂去除,那些原始元素又会再次自我组装成太阳能电池。

      与目前性能最佳的、能源转换效率不到20%的固态太阳能电池相比,MIT研究人员开发出的液态光电化学电池,转换效率号称可达到40%;研究人员并表示,开发浓度更高的碳纳米管与盘状分子组合,可望能将这种太阳能电池的效率进一步提高。

  • 关键字:能源转换  碳纳米管  光电化学 编辑:探路者 引用地址:能源转换效率最佳的碳纳米管光电化学太阳能电池

    上一篇:工程师做热设计不得不注意的若干事项
    下一篇:正确选择与应用好便携式电子设备中电池技术

    推荐阅读最新更新时间:2023-10-18 16:53

    IBM新型碳纳米管芯片:单芯片上制造上万晶体管
    11月 4 日消息,美国 IBM 公司使用标准的主流半导体工艺,将一万多个碳纳米管打造的晶体管精确放置在了一颗芯片内,并且通过了测试。   多年来,我们的芯片都根据摩尔定律发展:从以前的微米单位到现在的纳米单位,从以往的 90 纳米到 65 纳米到现在的 32 纳米。但随着工艺的加强,良品率逐渐降低,而且难以再提升,人们一直期望找到一种新的材料,可以替代传统芯片中的硅,以便延续摩尔定律,而 IBM 迈进了第一步。   作为一种半导体材料,碳纳米管有着很多优于硅的天然属性,特别适合在几千个原子的尺度上建造纳米级晶体管,其中的电子也可以比硅晶体管更轻松地转移,实现更快速的数据传输,纳米管的形状也是在原子尺度上组成晶体管的上
    [半导体设计/制造]
    浅谈碳纳米管电极降低太阳能电池成本
    碳纳米管森林可以有效替代铂(platinum)电极,用于染料敏化太阳能电池(DSC:dye-sensitized solar cells),这项新的研究是莱斯大学(Rice University)进行的。 这种单壁碳纳米管阵列的培育工艺是莱斯大学发明的,具有更大的电活性,而且比铂金更便宜,铂是常见的催化剂,用于染料敏化太阳能电池,娄军(Jun Lou)表示,他是莱斯大学的材料科学家。结合新开发的硫化电解质,他们可制成更有效率和更强大的太阳能电池,成本只有目前传统硅基太阳能电池的一小部分。 与娄军共同牵头的研究人员是材料科学与工程教授林红(Hong Lin),4月16日,他们详细介绍了他们的研究,在线发表在网上开放阅读的《自然》杂志
    [电源管理]
    浅谈<font color='red'>碳纳米管</font>电极降低太阳能电池成本
    MIT利用活体病毒改造碳纳米管太阳能电池
    美国麻省理工学院(MIT)的研究人员表示,活体病毒可用于将高导电性碳纳米管安装到染料敏化太阳能电池(dye sensitized solar cells)的正极结构中,电池效率可因此提高几乎三分之一。 染料敏化太阳能电池为一种光电化学系统,是由位于光敏正极与电解质之间的半导体元件材料制成的。覆盖着染料的纳米二氧化钛(titanium dioxide)会吸收太阳光,并将电子释放到正极中。然后那些电子会被收集起来用以驱动负载,然后经由负极回到电解质中,如此不断循环。MIT研究人员表示,通过病毒使碳纳米管和正极交织在一起,就能将染料敏化太阳能电池的转换效率由8%以下,提高到10.6%以上。 该研究团队是由MIT教授Angela
    [新能源]
    为了“中国芯”换道超车——彭练矛的芯片强国梦
    新华社北京6月28日电(记者王健 魏梦佳)当人类生活越来越离不开手机、电脑等电子产品时,这些产品的核心部件芯片正面临着性能极限的逼近。 好在科学家们正在探索用新材料来替代硅制造芯片,从而冲破芯片的物理极限。在这方面,中国科学家已经走在了世界前列,这也为中国芯片产业的换道超车提供了可能。 北京大学彭练矛团队研究生在做实验。(由该研究团队提供) 北京大学电子系教授彭练矛带领团队成功使用新材料碳纳米管制造出芯片的核心元器件——晶体管,其工作速度3倍于英特尔最先进的14纳米商用硅材料晶体管,能耗只有其四分之一。该成果于今年初刊登于美国《科学》杂志。 “如果把芯片比作一栋房子,晶体管就是建房的砖头,一栋栋的房子就构成了我们的信
    [半导体设计/制造]
    为了“中国芯”换道超车——彭练矛的芯片强国梦
    太阳能碳纳米管染料或取代电池
    从20世纪70年代开始,化学家们就一直在研究如何将太阳能储存在遇光会改变状态的分子当中。光敏分子是理想的太阳能燃料。这种燃料应该是可传输、便宜且可再充电的。遗憾的是,多年来,科学家们并没有取得多大进展。 麻省理工学院研究人员AlexieKolpak和JeffreyGrossman发现了一种新型太阳能热燃——偶氮苯。它经济、可再充电、发热稳定,比锂电池的能量密度高。他们的设计将有机光伏分子偶氮苯和碳纳米管结合起来。 在了解其设计细节之前,首先让我们快速了解一下光伏分子储存太阳能的原理。当光伏分子吸收太阳光时,它会产生结构变化,从一般状态变为更高能量状态。更高能量状态具有亚稳定性,电压、热、光等许多因素都能引发它的变化,回来原来的状
    [新能源]
    3D畅想碳纳米管芯片:超长手机续航 皮肤贴合传感器
    近日,国内科技产业缺少核心芯片技术一事引发关注。此前据媒体2017年报道,北京大学教授彭练矛带领团队成功使用碳纳米管制造出芯片晶体管,工作速度5-10倍于同尺寸的硅基晶体管,能耗只有其10分之1。该成果于2017年初刊登于《科学》杂志。不过彭练矛称,改技术要从实验品变成产品,还需攻破许多难关。
    [手机便携]
    3D畅想<font color='red'>碳纳米管</font>芯片:超长手机续航 皮肤贴合传感器
    微流体技术+碳纳米管纤维=更安全的脑内植入
      据麦姆斯咨询报道,莱斯大学(Rice University)的研究人员开发出一种新型装置,利用微流体技术在大脑中植入柔韧的导电碳纳米管纤维,以帮助记录神经元活动,有望取代可能会损伤脑组织的传统植入方法。下面就随嵌入式小编一起来了解一下相关内容吧。   莱斯大学的研究人员表示,植入技术能够改善通过电极感知神经元信号的治疗方法,为癫痫病和其它相关疾病患者展开治疗。同样,纳米管电极也能帮助研究人员和科学家们找出认知过程背后的机制,使得病人能够看到、听到并控制义肢。   该装置利用快速移动的流体所产生的力将绝缘柔性纤维轻轻地推入脑组织中而不变形。该方法可以取代传统方法——使用坚硬的穿梭物和生物降解护套将电线导入大脑,在此过程中可能
    [嵌入式]
    MIT研究人员制造出碳纳米管材料电极
    美国麻省理工学院(MIT)的研究人员发现,在锂离子电池的其中一个电极使用碳奈米管材料,所制造的电池电力会是传统锂电池的十倍;研究人员是采用逐层(layer-by-layer)的制造方法,产出该种新电极材料。 上述制造方法是将一种基底材料交错浸泡在含有碳奈米管的溶液中,该溶液并已经先用简单有机化合物处理过,使其待有正或负净电荷;当所形成的交替层状沉积在基底材料表面上,它们会因为正负电相吸而紧紧接合,然后形成稳定耐用的薄膜。在该种新电池电极材料中,碳奈米管也会「自我组装」为紧密接合的架构。 根据研究人员的说法,这种新电极材料的能量输出表现是传统电容的五倍,总电力传输速率则是传统里离子电池的十倍。而如此性能
    [电源管理]
    小广播
    最新电源管理文章
    电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved