用在荧光照明中的功率电子器件

最新更新时间:2012-06-25来源: OFweek关键字:荧光照明  功率  电子器件 手机看文章 扫描二维码
随时随地手机看文章

  为了降耗节能,用荧光灯、LED或HID替代白炽灯的工作正在全世界范围内进行,并取得了巨大进展。举例来说,电子变压器已用来驱动低电压卤素灯,用于荧光灯的磁性镇流器已经被电子镇流器所取代,而LED已经使用高效的开关电源。其中,替换50/60Hz铁芯变压器或镇流器的主要原因是为了提升效率。不过,新型电子镇流器虽能带来更高的性能和更小的质量或体积,但价格仍偏贵。然而,取决于具体应用,特别是考虑到电子镇流器能降低能耗的时候,用其取代磁性镇流器的投资回报时间就不会超过一年。

  对荧光灯照明和电子镇流器的封闭检查

  经典的磁性镇流器和启辉器能完满执行荧光灯的工作要求(见图1)。最初,起辉器S1关闭,电流流经电感L1和灯丝FL。当起辉器经一段时间启动后,灯丝已处于高温状态,电流的急剧变化会导致电感产生高电压并通过灯泡。当灯被点亮后,电感的感抗就会限制放电电流。

  

  图1 磁性镇流器原理

  磁性镇流器的缺点

  这个简单镇流器的一些缺点是明显的,而另一些则不是。首先,启辉器会在线电压零交叉时启动。此时的电流比较小,启动电压也是如此,灯泡也许不会启动。整个系统效率较低,而这要归结于两个原因。首先是价格的风险,电感自身的高损耗是公认的。第二是离子在线电压零交叉时要重新结合,而在下个半周期中又要被离子化,后面的行为会导致可观的能量损失。

  电子镇流器的优点

  电子镇流器的一个主要优点是其有很高的频率(一般为30~60kHz)。由于此高频率,离子的重组合不会发生,灯泡的效率会增加10%(相比于工作在50/60Hz时)。此外,电子镇流器本身的设计效率要高于90%,当同FL一起工作时,能轻易节省30%的能量。

  在欧洲最流行的FL镇流器拓扑是电压馈电系列共振半桥(见图2)。

  

  图2 FL镇流器的结构框图

  半桥能被不同的频率驱动,占空比约为50%。在启动阶段,只要FL不被点燃,镇流器控制器就会产生高于L1/C1的共振频率。于是,大电流流经灯丝将其加热到预期的温度。当经过一段决定于外部元件的时间后,控制器开始降低工作频率以达共振。其结果,通过灯泡的高电压产生了,灯泡被点亮。点亮后,FL的阻抗会对共振电路进行抑制,使灯泡上的电压接近工作电压。在许多应用中,灯泡电流被直接或间接地感应到,工作频率会被调整到预置点。而只要工作频率超过L1/C1的共振频率,MOSFET就会进行软开关,在EMI被降低的同时,开关损失可忽略不计。

  带有快速恢复二极管的MOSFET会非常适合如图1那样的应用。集成快速恢复体二极管的500V和600V Q-FETTM,以及600V SuperFETTM都属这种类型。因为上部MOSFET的栅极需要高电压驱动,所以高压侧的栅极驱动是必须的。高电压驱动器芯片,像飞兆公司的FAN7380、FAN7383、FAN7384以及FAN7382都符合这些要求并具有很好噪声免疫能力。此外,还有具备安全和控制功能的纯镇流器驱动器FAN7544和集成高压栅级驱动的控制器FAN7532。

  功率因数校正

  按照电流国际标准要求,如果照明设备的功率超过25W,就必须使用功率因数校正。这里有两个原因:一个是白炽灯泡的特性像一个电阻,也就是说电压和电阻是同相的。二是照明只消耗了总功率的10%~12%,一天要工作几小时,相比于其他设备是相当长了。因此,如果照明电器没有进行功率因数校正,就会导致电源网络上的大量额外损失。

  因为多数设备的总功耗都在150W以下,所以临界模式PFC是最经济的解决方案。在这个模式下,通过控制电感的峰值电流,电流峰值就能同整流后的输入电压成比例。在空闲时间,电感电流回落到零,也就是电感的退磁会启动下个开关周期。很容易看到电感的平均电流同输入电压成比例,这就是预期的结果。这里还有两种不同的方法来控制电感的峰值电流。在FAN7527的电流模式下,整流后的线电压会感应出参考电流,其能设定峰值电流的实际值。而在FAN7529的电压或恒定工作时间模式下,开关设备的工作时间在一个或多个线性半周期中是保持恒定的。保持工作时间恒定,峰值开关电流又再次同输入电压成比例,并能从基本的微分式dI/dt =V/L中解出来。这两种模式的共同点是输出电压的感应和稳压。

  

  图3 转换模式PFC的电压模式控制应用框图

  低价镇流器有多种PFC拓扑,或用高感抗的铁芯扼流圈平滑输入电流,或弃用功率开关和控制器IC而使用电荷泵PFC。在这种拓扑中,半桥结构用来驱动荧光灯和PFC(见图4)。因为灯泡的电源必须稳压,且没有额外的度数用来控制PFC,所以很难找到合适的L和C来形成良好的功率因数并将灯泡稳定在很宽的输入电压范围内。这就是为什么这种解决方案很便宜,却很少使用的缘故。

  电子镇流器的另一个特点是能“完美”地预热灯丝,使得灯泡的寿命完全不会依赖开关周期的次数,并能不闪烁地启动和工作,在不同输入电压下保持恒定亮度和具有高功率因子。最后,对应急照明尤其重要的是,电子镇流器能工作在直流输入电压下,即可采用电池供电。

  

  图4 带电荷泵PFC的自振荡镇流器

  灯寿终(EOL)探测

  在气体放电中,有个接近阴极的区域,放电电压在此处下降很快,且没有光发出,因此被叫做“阴极势降”。根据电压降和电流,这个区域会产生相当的功率耗散。随着灯泡工作时间的增加,灯丝的发光性会变差,而阴极势降也会增加。结果,接近阴极的功率耗散增大,这个区域也就会变得越来越热。如果灯管的直径很小,它就很容易被加热到熔点。因此,灯管越细,对一种叫EOL特性的检测就变得越来越重要。尤其是对于T5,这个特性是必不可缺的,它已被包含在用于荧光照明的欧洲安全标准中。

  通常情况下,FL是在交流模式下工作的,每个灯丝会有50%的时间成为阴极。幸运的是,两个灯丝中的一个会首先丧失发射率,灯泡因而变得不均匀。这样,监控整个灯泡的电压或工作电压/电流的对称性就有可能探测到EOL。

  紧凑型荧光灯(CFL)的封闭性检查

  CFL包含了一个集成在灯泡中的电子镇流器。因为替代了白炽灯泡,当FL有缺陷时这些镇流器就会被丢弃。这就是为什么一个CFL的电子器件不必要有FL镇流器那样长的寿命。此外,因为空间受限且PFC被弃用,功率也会受限。总之,虽然有同样的基本结构,CFL却使用了与FL镇流器有少许不同的逆变器电路。通常,多数CFL使用一个自振荡半桥来替代控制IC(见图5)。

  

  图5 典型自振荡CFL镇流器

  新的控制器像FAN7711和集成了功率MOSFET的高电压栅级驱动器FAN7710有助于简化CFL的设计,特别是设计者希望用新的集成控制器来获得额外的性能和安全特性时。

  

  图6 FAN7710的典型应用

  结语

  全世界对提高照明产品功效的持续关注推动了在照明应用中使用更多的高效解决方案。具体表现就是在照明设计中逐步增加对电子器件的使用,而半导体供应商在这一过程中将扮演非常重要的角色。

关键字:荧光照明  功率  电子器件 编辑:探路者 引用地址:用在荧光照明中的功率电子器件

上一篇:开关管和整流管功耗计算方法
下一篇:高压元器件整合简化PoE用电装置设计[

推荐阅读最新更新时间:2023-10-18 16:54

智能大功率超声波清洗电源的研制
  1 前言       鉴于超声波清洗效果好、效率高、成本低等优点,超声波清洗机被广泛应用于电子、机械、钟表、光学、医疗、化纤、电镀等行业 。在超声波清洗设备中,超声波电源是其重要组成部分之一。现有的超声波电源大多数采用专用集成控制芯片(如SG3525、TL494) 或单片机产生PWM 脉冲信号, 经功率放大、阻抗和调谐匹配后, 推动换能器将电信号转换为机械振动, 产生超声波。这两种电源都存在着各自的局限性,前一种控制方法动态响应慢,参数调整不方便且温度漂移严重 ,而采用单片机直接产生PWM信号,虽然能够得到高精度和高稳定度的控制特性,实现灵活多样的控制功能,但是由于受其工作频率的限制,输出的PWM信号频率分辨率较低,难以满足频
[电源管理]
智能大<font color='red'>功率</font>超声波清洗电源的研制
智能车灯控制系统中功率芯片的应用经验
    智能车灯控制系统概述     本文介绍了在智能车灯控制系统中功率芯片的应用经验,与传统技术进行了对比,结合实例具体分析了其实现的智能诊断技术在实际产品应用中的技术优势和发展前景。     现今MCU和电力电子技术在智能车灯控制系统中发展的趋势是用智能功率IC替代传统的继电器和保险丝,有效实现对车灯的过热、过压、短路等故障的保护和诊断;MCU用PWM调制来实现对车灯两端的电压进行控制,以达到限制车灯电流,延长使用寿命的目的,而且能轻松实现车灯故障时的自动替换并极大地降低待机功耗。     我们采用Infineon高端开关应用于智能车灯控制系统中。以下详细介绍其在实际产品中的应用经验。     Infineon芯片新功能
[电源管理]
智能车灯控制系统中<font color='red'>功率</font>芯片的应用经验
用于CDMA2000和W-CDMA的HPA的射频功率测量
对于用于CDMA2000与W-CDMA基站的大功率放大器(HPA)的设计师来说,他们面临许多完成精确发射功率测量的挑战。其中涉及到的复杂因素包括高的峰均比以及峰均比随基站通话载荷、大的工作温度范围和大的发射功率范围变化而变化。制造商利用精确的有效值(RMS)输出功率测量减小HPA的功率。本文描述了在工作温度范围内精确测量和控制RMS功率的几种方法。 复合调制方案,例如CDMA2000与W-CDMA,具有很高的峰均比。对于一个给定的最大平均输出功率的要求,当峰均值由于基站频谱屏蔽和误差向量值(EVM)的要求而增加时,最大设计功率要求通常会增加(或线性化要求增加)。如果被调制信号的峰值被削波,那么第三级失真将会增加,从而导致基站不能
[测试测量]
用于CDMA2000和W-CDMA的HPA的射频<font color='red'>功率</font>测量
ANADIGICS功率放大器满足双频手机高集成要求
  ANADIGICS公司日前宣布其HELP3ETM双频功率放大器AWC6323应用于Samsung Intensity II和Gusto两款手机中。   AWC6323是ANADIGICS的高能效低功耗(HELP)双频CDMA功率放大器组合中首款封装尺寸為3 x 5 x 1的产品。相较于业界的CDMA功率放大器,AWC6323有最低静态电流,针对延长待机时间和改进手机的整体效能扮演重要的角色。   三星Intensity II和Gusto手机由北美最大的无线网络运营商Verizon销售,是该公司在产品价值和可靠性方面最受好评的手机。Intensity II轻薄型手机适合高速社交网络,其滑出式QWERTY全
[手机便携]
ANADIGICS<font color='red'>功率</font>放大器满足双频手机高集成要求
不断改进的12脉冲整流成为大功率UPS的优选技术
一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥 整流 ,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整 流 。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K±1(k为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲 整流 的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12
[电源管理]
不断改进的12脉冲整流成为大<font color='red'>功率</font>UPS的优选技术
如何使用无线技术控制大功率快速充电
无线技术控制充电 的方式已经成为新的发展潮流和趋势,随着 CANFD 在汽车电子与轨道交通等行业的广泛应用,无线技术控制充电又将如何实现大功率快速充电?本文将介绍一套简单可行的方案。 一、传统方式充电的弊端 如图 1 所示,传统的新能源汽车是采用充电枪的方式进行充电,每次操作都是需要人工控制,在多次使用插拔的过程中充电枪和汽车充电接口之间的间隙会逐渐变大,这样容易产生放电,导致充电枪烧毁。这种情况下,增加了不必要的维修成本,更严重地会发生触电安全事故或火灾等情况。 另外,传统方式充电电流最大不超过 250A,充电功率较低,充电时间相对较长。随着汽车智能化、电动化、网联化的发展,未来新能源汽车采用大功率的快充方式也将成为
[汽车电子]
如何使用无线技术控制大<font color='red'>功率</font>快速充电
内置译码器的步进电机微步进驱动芯片A3977
1 引 言    随着微步进电机应用的日益广泛,其驱动电路的发展也相当迅速,各类控制芯片的功能越来越丰富,操作也越来越简便。A3977是一种新近开发出来、专门用于双极型步进电机的微步进电机驱动集成电路,其内部集成了步进和直接译码接口、正反转控制电路、双H桥驱动,电流输出2.5A,最大输出功率可接近90W。它主要的设计功能包括:自动混合模式电流衰减控制,PWM电流控制,同步整流,低输出阻抗的DMOS电源输出,全、半、1/4及1/8步进操作,HOME输出,休眠模式以及易实现的步进和方向接口等。其应用电路结构简单、使用及控制方便,有着极其广泛的应用价值。 2 A3977工作特点    大多数微步进电机驱动器都需要一些额外的控制线,通过
[应用]
电动汽车直流充电新国标发布:功率提升至800kW
9月14日消息,近日,由工业和信息化部提出、全国汽车标准化技术委员会归口的 GB/T20234.1-2023《 电动汽车 传导 充电 用连接装置 第1部分:通用要求》和GB/T20234.3-2023《 电动汽车 传导 充电 用连接装置 第3部分:直流 充电 接口》两项推荐性国家标准正式发布。 新标准在沿用我国现行直流充电接口技术方案、保障新老充电接口通用兼容的同时,将最大充电电流从 250 安培提高至800安培、充电 功率 提升至800千瓦。 同时增加了主动冷却、温度监测等相关技术要求,优化完善了机械性能、锁止装置、使用寿命等试验方法,有利于进一步提升传导充电连接装置的环境适应性、安全性和可靠性,并同时满足直流小 功率
[汽车电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved