基于DS2762的智能锂电池监测系统

最新更新时间:2012-07-19来源: 21ic关键字:场效应管  液晶显示模块  监测系统 手机看文章 扫描二维码
随时随地手机看文章

    一、引言

    目前, 在设计便携式产品时通常采用电池供电。

    在使用电池供电时, 电池的当前状态是用户所关心的, 如智能电话、数码相机等都实时显示当前的状态。为此, 在设计本文所涉及的仪器时, 智能电池监测系统被充分考虑。本文实现的锂电池监测系统由DS2762 锂电池监测芯片、51 单片机、液晶显示模块组成。其中的核心功能由DS2762 芯片完成的。本文介绍了系统的硬件实现和软件设计, 以及DS2762 芯片的特性和相关控制软件程序。

  二、系统硬件结构及工作原理

    1、系统硬件结构。本系统的硬件设计力求简洁,以便使单片机能够完成更多其他功能。硬件实现如图1 所示:

图1 硬件结构图

    整个系统由DS2762 锂电池监测芯片、51 单片机和液晶显示模块组成。DS2762 芯片是MAXIM公司推出的新一代智能锂电池监测芯片, 集数据采集、信息储存、安全保护于一身,具有功能强大、硬件接线简单等特点。它完成对电池当前状态的监测, 包括当前电池的充/ 放电状态、电压、电流、温度和剩余电量等参数的监测。DS2762 芯片能自动采集这些数据, 并将其放在存储器中。

    DS2762 的引脚功能如下图2 所示:

图2 引脚功能

    PIO: 可编程的I/O 端。根据需要控制用户定义的外围电路。

    VDD: 电池正极输入。

    Vin: 感应电压输入。

    51 单片机按照用户需要对电池的相应参数读取和处理, 然后送往液晶显示模块显示。由于存放这些参数的EEPROM具有非易失性, 所以本系统具有掉电保护功能。由图1 可见, 单片机是整个系统的控制处理中心, 由于大量的工作由单片机完成, 明显地降低了系统硬件复杂度, 极大地提高了系统的智能化。

    液晶显示模块显示用户需要了解的电池当前状态信息, 用户根据这些信息以作出相应的处理。它仅仅接受单片机的控制和访问。

    2、工作原理。系统上电后, 先确定电池的工作方式: 单片机每88ms 监测一次电压, 将DS2762的IS1 和IS2 两端的压差( Vis=Vis1- Vis2) 转换成电流后存入电流寄存器。若Vis 为正值, 说明电池正在充电; 若Vis 为负值, 说明电池正在放电, 也就是仪器正由锂电池直流电源供电。接着单片机对DS2762 发出采集电压、温度的控制命令。由于DS2762 内部有A/D 转换器和数字温度传感器, 可自动将电压、温度测量值存入DS2762 相对应的寄存器, 因此, 单片机只要等待其采样完毕后, 读取寄存器的内容, 最后送液晶显示模块显示。

    电池的剩余电量可用电流累加寄存器的值求得。电流累加寄存器的值是由DS2762 实时自动测量电池电流后更改的, 无须对其进行控制。电池充电时该值增加, 放电时该值减少。单片机读取此值后即可获得剩余电量。

    场效应管FET1、FET2 等构成DS2762的充放电保护回路。过压保护:如果电池电压Vin 超出过压门限电压Vov, 延时Tovd后,DS2762 将关闭充电场效应管FET1.欠压保护: 如果电池电压Vin 低于欠压门限电压Vuv, 延时Tuvd 后,DS2762 将关闭充电和放电场效应管FET1、FET2, 进入睡眠方式, 等待充电指令。充电过流保护:如果Vis(Vis=Vis1- Vis2)超出过流门限Voc, 延时Tocd 后, DS2762 将关闭场效应管FET1、FET2.放电过流保护:如果Vis 低于- Voc, 延时Tocd 后, DS2762 将关闭放电场效应管FET2.短路保护:如果SNS 脚的电压超过短路门限电压, 延时Tscd 后, DS2762 将关闭放电场效应管FET2.

  三、系统软件实现及流程图

    为了满足监测的实时性, 单片机采用定时中断的方式访问DS2762, 进行电池参数采集。首先设置单片机的计数器为定时方式, 开启定时器, 定时长度可随需要灵活设定; 然后单片机运行其他程序, 等待定时中断的到来, 定时中断发生之后进行中断服务程序, 对数据进行采集、处理和显示; 最后重新初始化定时中断, 返回。图3 是系统总体流程图, 图4 是中断服务流程图。

图3 系统总体流程图

图4 中断服务程序流程图

    DS2762 与单片机进行数据通讯时仅用一根数据线( DQ) , 因此必须严格按照芯片的读写时序要求来编写程序, 这样才能保证数据的正确读写。图5、图6 是DS2762 芯片对电池的工作方式和剩余电量进行监测的程序流程图:

图5 电池工作方式监测流程图

图6 剩余电量监测流程图

    说明: 1> 单片机对DS2762 进行任意存储命令操作时, 在发出每个命令之前都必须按照DS2762的复位时序要求。先发出复位信号且等待DS2762的应答( 以示DS2762 准备接受或发送数据) , 然后再发出一个ROM 命令用以选择总线上要访问的DS2762.在本文的程序流程图中此过程用"DS2762的初始化"来代替。2> 在读取寄存器的值时, 为防止读取错误, 先要检查DS2762 是否正在修改寄存器的内容。这可通过判断EEPROM寄存器的EEC 位即可。

    四、结束语

    本文介绍的基于DS2762 芯片的锂电池监测系统是一种便携式仪器的一部分。系统硬件设计简洁,且同单片机配合使用, 不仅极大地提高了智能化, 而且功能强大、操作方便, 能够与其他功能协同工作。

    随着各种便携式电子产品的广泛应用, 电池实时监测已成为一种必不可少的功能, 因此本文所介绍的系统具有较强的实用性, 可用于数码相机、智能电话及其他便携式仪器的智能锂电池监测模块中。<

关键字:场效应管  液晶显示模块  监测系统 编辑:探路者 引用地址:基于DS2762的智能锂电池监测系统

上一篇:一种新型电流极限比较电路
下一篇:两种高功率因数开关电源设计方案的比较

推荐阅读最新更新时间:2023-10-17 14:58

利用CompactRIO和LabVIEW实时模块搭建变压器监测系统
  挑战:   设计开发变压器监测系统( TMS )以完成关键参数的采集、处理、分析以及与数据中心的通信工作,进而对电力网络中广泛分布的配电变压器进行分析处理和可视化监控。   解决方案:   采用 NI Labview 软件和 CompactRIO 平台、利用通用无线分组业务(GPRS)通信接口实现远程配电变压器的 数据采集 任务。使用地理信息系统(GIS)和基于Web的应用提供图形化的可视界面。   配电变压器是配电系统的重要组成部分。我们决定开发一套远程系统以实现对变压器的定期监测,因为人工检测的成本较高,不够经济。虽然我们很早以前就需要对变压器进行实时的远程监测,但直到最近我们才拥有了可行的通信媒
[测试测量]
基于近红外光电传感的溢油监测系统设计与实现
近年来,由于我国海洋石油勘测及开采规模不断扩大,海上石油运输日益繁忙,因石油开采、运输、存储以及其它原因造成海洋突发性溢油事件的发生几率不断增加。据统计,1973~2008年底,我国沿海共发生船舶溢油事故3000多起,其中50 t以上重大船舶溢油事故69起,总溢油量37077 t,年均2起,平均每起事故溢油量537 t,在对海洋环境造成了极大的伤害同时严重的影响了沿海居民生活 。 当前对于海面溢油的传统检测方法有航空遥感和卫星遥感,但是二者均存在着不同的问题,航空遥感监测不具有实时性,卫星遥感对于小范围污染具有不准确性等缺点,因此,研究和设计一种能实时、准确地监测海面漂浮溢油的系统对保护海洋环境资源具有重要意义。鉴于近红外光谱分析
[电源管理]
基于近红外光电传感的溢油<font color='red'>监测系统</font>设计与实现
变压器铁芯接地电流实时监测系统设计
  电力变压器是电力系统中最重要的电气设备,运行中一旦出现故障,将会对电力系统造成严重的后果。正常运行的变压器铁芯一点接地,如果有两点或者两点以上同时接地,则铁芯与大地之间将形成电流回路,最大电流可以达到几十安培,将会造成铁芯过热,甚至烧毁。目前判断变压器铁芯是否存在多点接地,主要有三种方法:钳形电流表定期监铁芯接地电流的电气方法,测量铁芯对地绝缘电阻法,监测变压器绝缘油特征气体的气相色谱分析法。以上方法存在的不足是不能及时发现铁芯多点接地故障,一旦发生故障,也不能及时采取相应措施。因此,对变压器铁芯接地电流的实时在线监测是十分必要的。   目前,现场人员多采用钳形电流表夹住铁芯接地线来监测其电流,但由于变压器强磁场的干扰,测
[嵌入式]
基于Atmega128单片机和GPRS的矿区铁路道口监测系统
1 引言   矿区铁路是衔接国家铁路与矿区的中间环节,是铁路运输网的重要组成部分。据有关资料统计,目前国内矿区铁路超过2万公里且其沿线附近通常分布着多个道口。由于道口大多分布在远离市区的矿山企业内部,并且其数量多、分散以及道口之间的距离长,加上矿区内各种运输工具的交叉作业及车辆、人员的不固定的流动,使矿区铁路道口的安全管理成为十分突出的问题。为使各级矿区管理部门能及时、准确掌握各个道口的的安全情况,本文以 Atmega128和MC55为核心,设计一套铁路道口监测系统,实现对铁路道口监测管理的自动化、数字化和网络化。这对保证矿区正常生产、提高矿山企业经济效益和通过道口车辆、行人安全具有重要意义。 2 系统组成
[单片机]
基于Atmega128单片机和GPRS的矿区铁路道口<font color='red'>监测系统</font>
LCD液晶显示模块功耗的测量方法
一 测量原理图 说明K1 K2 K3 是LCD 模块的设置开关K1 是WDT 选择开关闭合时打开WDT 否则关闭 WDT K2 是TONE 选择开关闭合时打开音频输出否则关闭K3 是LCD 模块振荡器选择开关K3 闭合时是选择外部32.768K 晶振否则选择内部RC 振荡器256K KEY 是确认键用于循环测量流程LED 是测量值可读数指示灯当MCU 对LCD 模块设置完后将把接口的IO 口P0.1 P0.3 P0.5 置为高阻态再点亮LED 指示测量值可读 测量方法通过对K1 K2 K3 选择LCD模块的工作方式然后按一下KEY 键等LED 点亮时观 察LCD 若LCD 全显则此时电流表测出的电流就是当前设置工作方式全显的电
[嵌入式]
LCD<font color='red'>液晶显示</font><font color='red'>模块</font>功耗的测量方法
基于PXI和SCXI的多传感器桥梁远程监测系统
  一、引言   桥梁建设是一个国家民用基础设施中不可缺少的组成部分,在经济建设中发挥重要作用。在桥梁的使用过程中,由于菏载作用(尤其是交变菏载)、疲劳效应、腐蚀效应、材料老化和突发事故(如撞击、地震)等不利因素的影响,桥梁结构不可避免地出现结构损坏和损伤积累,严重的甚至会导致突然倒塌。为了避免事故地发生,对桥梁进行监测是十分有必要的。   近年来,在新兴的虚拟仪器技术的支持下,各类桥梁监测系统发展迅速,在实际桥梁监测中收到了较好的效果。为了进一步研究多传感器的虚拟桥梁监测方法,本人利用实验室已有的设备,搭建一个基于 PXI 和SCXI 的多传感器桥梁远程监测系统,并通过对模型桥的监测评估了该系统的各项
[安防电子]
基于PXI和SCXI的多传感器桥梁远程<font color='red'>监测系统</font>
基于紫金桥软件的恶臭在线监测系统
紫金桥组态软件以其优异的特性在恶臭监控系统中获得了成功应用,实现了实时数据浏览、报警输出、实时和历史数据趋势显示、历史数据存储等功能。紫金桥软件为创建高效、实用的恶臭监控系统提供了一套完整的解决方案。 恶臭是指大气、水体、废弃物等物质中含有的、具有能够引起人体厌恶或不愉快气味的挥发性物质,通过空气介质,作用于人的嗅觉器官而被感知的一种感知(嗅觉)污染。恶臭是典型的公害之一,随着人们生活水平的不断提高及对优美舒适环境要求的日益迫切,其危害性已经引起了公众的广泛关注。 目前城市的恶臭问题十分的严重,也是居民投诉的热点问题,传统意义上判断空气是否被污染,空气中是否有异味主要靠我们的鼻子,于是就有了 闻臭师 这一职业,但 闻臭师
[测试测量]
基于紫金桥软件的恶臭在线<font color='red'>监测系统</font>
PPC 405EP在电力监测系统中的应用
1 引言 目前,作为监测系统核心器件的微处理器一般采用高性能单片机、数字信号处理器(DSP)等提高系统的处理速度。但是,随着电力系统监测趋于多功能、智能化、可视化的发展。上述单一的器件已不能完全满足要求。本文介绍了一种新型嵌入式微处理器PPC 405EP以及基于PPC 405EP的电力监测系统,能够满足高实时性、良好的人机交互和多种通信方式要求。 2 PPC 405EP微处理器 20世纪90年代,IBM和Motorola以及Apple公司共同开发了32位/64位PowerPC系列微处理器,主要应用于PC、网络通讯、工业控制领域。PowerPC灵活的体系结构可实现多种专用系统。PPC405EP是IBM/AMCC公司
[工业控制]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved