两种高功率因数开关电源设计方案的比较

最新更新时间:2012-07-19来源: 21ic关键字:开关电源  高功率  全桥 手机看文章 扫描二维码
随时随地手机看文章

    0 引言

    传统的开关电源整流电路普遍采用不可控二极管或相控晶闸管整流方式,直流侧采用大电容滤波,输入电流谐波含量大,功率因数低,造成了严重的电网污染和能源浪费。目前,解决谐波问题、提高功率因数的主要方法:(1)对产生谐波的电力电子装置的拓扑结构和控制策略进行改进,使其产生较少的谐波甚至不产生谐波,使得输入电流和输入电压同相,达到提高功率因数的目的,如PWM整流技术;(2)在整流桥和滤波电容之间加一级用于功率因数校正的功率变换电路,如有源功率因数校正(APFC)技术。近些年来APFC技术和PWM 技术在中、小功率乃至大功率开关电源中得到了普遍应用。本文以高功率因数开关电源作为研究对象,分析采用APFC技术和PWM 整流技术来提高功率因数的原理,并采用Matlab7.6软件对单相电压型PWM 整流电路和APFC电路进行了仿真及分析比较。

  1 高功率因数开关电源的设计方案

    1.1 采用PWM 整流技术的开关电源

    采用PWM 整流技术的高功率因数开关电源的结构如图1所示,本文只探讨其中的PWM 整流电路部分。

图1 采用PWM 整流技术的高功率因数开关电源结构

    该种高功率因数开关电源设计方案采用PWM整流技术和DSP技术,能数字化地实现整流器网侧单位功率因数正弦波电流控制,比较适合应用于中等功率开关电源设计中。

    1.2 采用APFC技术的开关电源

    采用APFC技术的高功率因数开关电源,其前级APFC电路采用实际生产中应用最广泛的Boost拓扑结构,负责使交流输入电流正弦化并使其与输入电压同相位,同时保持输出电压稳定;后级DC/DC变换电路采用能实现多路输出的反激式拓扑结构,主要负责调整输出电压,通过DC/DC变换得到所需要的直流电压,其结构如图2所示。

图2 采用两级型APFC的高功率因素开关电源结构

    2 单相PWM 整流电路的基本原理

    本节采用图1所示的方案,其前级如图3所示,即单相全桥电压型PWM 整流电路,电路采用有4个全控型功率开关管的H 桥型拓扑结构。图3中网侧电感为升压电感,起平衡电路电压、支撑无功功率、储存能量和滤除谐波电流的作用;Rs为滤波电感的寄生电阻;主电路中功率开关均反并联一个续流二极管,用来缓冲PWM 过程中的无功电能。

    单相全桥电压型PWM 整流电路的SPWM 调制方法分为单极性调制和双极性调制两种,本文采用单极性调制。

    单相全桥电压型PWM 整流器选择响应速度较快的三角波电流比较法作为控制策略。因反馈到电压外环的输出电压含有纹波电压,而纹波电压的存在将导致电流内环的给定电流发生畸变,因此本文采用补偿输出直流电压中纹波电压的方法[4]来减少流入电压控制环的纹波电压,从而改善给定电流的波形。按照以上原理设计的单相全桥电压型PWM整流器的控制系统结构如图4所示。

图4 单相全桥电压型PWM 整流器的控制系统结构

    由图4可知,PWM 整流控制系统中需要检测的信号有输入交流电压us、输出直流电压ud以及输入交流电流is.us是闭环控制中相位检测的输入信号;通过比较ud与给定参考电压u*d以及直流侧纹波电压补偿u~d来决定电压外环PI调节器的输出im,并将其与输入电压同步信号sinωt的乘积作为指定电流i*s ;is与i*s的差值决定电流内环PI调节器的输出;最后比较电流内环PI调节器的输出与三角载波,产生PWM 信号来控制开关管的关断。这样,电流PI调节器的输出决定PWM 信号的占空比,使实际输入电流逼近指定电流值。

    3 有源功率因数校正技术

    本节采用如图2所示的方案,基于Boost-APFC的功率因数校正电路如图5所示。该电路由主电路和控制电路组成。主电路包括桥式整流器、升压电感、功率开关管、续流二极管以及滤波电容等,控制电路包括电压误差放大器VA、电流误差放大器CA、基准电压源、乘法器、PWM 比较器以及栅极驱动器。

图5 基于Boost-APFC的功率因数校正电路

    工作原理:APFC主电路的输出电压经电阻分压后与基准电压相比较,误差值输入到VA;VA 输出信号X与输入电压检测信号Y一起输入乘法器,经过平均化处理、放大、比较后,再经过PWM 比较器加到栅极驱动器,产生对开关管VT的控制信号,从而使电感Ls上的电流(即输入电流)平均值始终跟踪模拟乘法器输出的半正弦信号,即跟踪了输入电压波形,并实现了输入电流正弦化,使功率因数接近1,达到校正功率因数的目的。

    4 仿真分析

    4.1 PWM 整流器电路仿真与分析

    采用Matlab7.6对所设计的单相全桥电压型PWM 整流器进行建模和仿真,在Simulink中搭建仿真模型,主电路仿真参数:峰值电压为311V,频率为50Hz,相位为0°,采样时间为0s;Ls=2mH,Rs=0.5Ω,直流侧滤波电容Cd=2 500μF,直流侧负载电阻RL=50Ω;从PowerElectronics中调用Universal Bridge 模块,并将其设置成二桥臂IGBT/Diodes模式,仿真算法设置为可变步长类算法中的ode45算法。

    交流输入侧电压与电流的仿真波形如图6所示,可见交流侧电流、电压能始终保持同相,且电流能实现正弦化。直流侧输出电压波形如图7所示,可见0.06s后输出电压稳定在400V左右。

    在Powergui模块中对电路进行FFT分析,在Available Signals中进行相关设置后对输入侧电流进行谐波分析,结果如图8所示。由图8可知,总谐波畸变率DTH=0.77%,实现了系统低谐波畸变率的目标,电流谐波得到了很好的抑制。

图8 输入侧电流谐波分析结果

    PWM 整流器功率因数波形如图9所示。由图9可知,电路功率因数始终大于0.985,且工作0.03s后功率因数能达到1.

图9 整流器功率因数波形

    4.2 单相APFC电路仿真与分析

    单相APFC电路采用Matlab7.6进行建模与仿真。图10为APFC电路输入电压和电流波形,可见网侧输入电流由窄脉冲波形变成正弦电流波形,且与输入电压同相位。图11为APFC电路输出电压波形,可见经过60ms的软启动过程之后,输出电压稳定在400V左右,满足设计要求。图12为APFC电路输入电流谐波分析结果,可见除基波外,其余谐波含量均很小。

    由图12可知,输入电流DHD为0.256 5.功率因数计算公式为PF=γcosφ,其中r 为基波因子。

    由于输入电流与电压基本同相位,即相位差φ 为0,则:

    5 结语

    采用功率因数校正技术和PWM 整流技术设计了两种高功率因数的开关电源,采用Matlab7.6建立仿真模型。由仿真结果可知,采用DSP 芯片TMS320LF2407设计的前级单相全桥电压型PWM整流电路功率因数大于0.985,并在电路稳定后达到1,大于APFC电路的功率因数0.969;且电压型PWM 整流电路电流总谐波畸变率为0.77%,远小于APFC电路的总电流谐波畸变率25.65%.两者相比,单相全桥电压型PWM 整流器能更好地实现输入侧电流的正弦化和与输入侧电压的同相位,能更彻底地解决传统开关电源电流谐波大、功率因数低的问题,更好地实现绿色电能转换的目标。但是电压型PWM 整流器成本较高,在实际应用中应根据具体需求选择适合的类型。<

关键字:开关电源  高功率  全桥 编辑:探路者 引用地址:两种高功率因数开关电源设计方案的比较

上一篇:基于DS2762的智能锂电池监测系统
下一篇:24VDC-220VDC车载开关电源的分析与实现

推荐阅读最新更新时间:2023-10-17 14:58

反激式(RCD)开关电源原理及设计
  因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!   反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。   先学习下Buck-Boost变换器      工作原理简单介绍下   1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!   2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏
[电源管理]
反激式(RCD)<font color='red'>开关电源</font>原理及设计
基于68HC908SR12的智能数字化开关电源设计
  引言   与线性电源相比,开关电源具有诸多优点:由于主功率晶体管工作在开关状态,其损耗小,整机效率大大提高;采用铁氧体高频变压器,使电源的体积和重量大为减少,成本更低等。一些专用电源芯片如TL494、UC3842的出现,也使开关电源的设计更为简单,同时性能可靠。但只使用专用芯片制作的开关电源输出通常为单一状态,若要改变输出状态要对硬件电路进行修改。笔者设计实现了一种单片机控制的数字化开关电源,有效的改善了上述问题。   1 数字化开关电源的设计原理   笔者设计的数字化开关电源额定功率12OW。系统以开关电源作为基本电路,采用高性能单片机作为控制系统,在控制算法的支持下,通过对输出电压和电流进行实时采样,并与
[单片机]
基于68HC908SR12的智能数字化<font color='red'>开关电源</font>设计
降压开关电源设计过程中控制技术的选择
降压 开关 电源 的设计过程非常简单,从最初的规格说明出发,为设计选择合适的“核心 电路 ”,再配置一些外部元件,最 后仿真和验证以完成设计方案。但是目前有很多种 控制 技术,如何做出合适的决定很具挑战性。为了选择更合适的 控制 器或调节器,必须进行深入的研究。 经典的PWM控制技术 最常见的控制器采用经典的脉冲宽度调制 (PWM) 技术,利用内部时钟引导每个工作周期的开始,使主MOSFET导通。通过比较控制电压 (Vc) 和锯齿波电压幅度(Vp),能够对关闭时间进行定时,如图1所示。 图1 电压模式降压稳压器的基本架构 锯齿波有三种不同的生成方式,与之对应的是电压模式、电压型前馈控制和电流模式这三种
[电源管理]
开关电源设计重难点问答剖析
   如何为开关电源电路选择合适的元器件和参数?   很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的EMI问题、PCB layout问题、元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。   一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。   开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很
[电源管理]
<font color='red'>开关电源</font>设计重难点问答剖析
设计开关电源必须熟知的各种元器件
设计 开关电源 并不是如想象中那么简单,特别是对刚接触开关电源研发的童鞋来说,他的外围电路就很负责,其中使用的元器件种类繁多,性能各异。要想设计出性能高的 开关电源 就必须弄懂弄通开关电源中各元器件的类型及主要功能。 1、 电容器:   1. 滤波电容 构成输入滤波器、输出滤波器等。   2. 耦合电容 亦称隔直电容,其作用时隔断直流信号,只让交流信号通过。   3. 退藕电容 例如电源退藕电容,可防止产生自激振荡。   4. 软启动电容 构成软启动电路,在软启动过程中使输出电压和输出电流缓慢地建立起来。   5. 补偿电容 构造RC型频率补偿网络。 2、 电感器:   1. 滤波电感 构
[电源管理]
最通俗理解开关电源电磁干扰分析
  先简单介绍一下下EMI:EMI翻译成中文就是电磁干扰。其实所有的电器设备,都会有电磁干扰。只不过严重程度各有不同。电磁干扰会影响各种电器设备的正常工作,会干扰通信数据的正常传递,虽然对人体的伤害尚无定论,但是普遍认为对人体不利。所以很多国家和地区对电器的电磁干扰程度有严格的规定。当然电源也不例外的,所以我们有理由好好了解EMI以及其抑制方法。   下面结合一些专家的文献来描述EMI。   首先EMI 有三个基本面   噪音源:发射干扰的源头, 如同传染病的传染源;   耦合途径:传播干扰的载体,如同传染病传播的载体,食物,水,空气等等;   接收器:被干扰的对象,被传染的人。   缺少一样,电磁
[电源管理]
最通俗理解<font color='red'>开关电源</font>电磁干扰分析
混合频率模式绿色PWM控制器MC44603在开关电源中的应用
1. 引言   MC44603是美国安森美半导体公司(On Semiconductor)推出的增强型高性能PWM控制器,适用于电流模式或电压模式控制的离线式和DC-DC变换器。该控制器最大的特点是能够在变换器输出过载、欠载、短路等故障状态下自动变换工作模式。MC44603既可以工作在非连续模式下,也可以工作在连续模式下。下面对MC44603的特点、工作原理以及在开关电源中的典型应用进行介绍。 2 特点和引脚说明 2.1 特点   MC44603具有以下特点:   (1)提供两种控制模式:电流模式和电压模式;   (2)内置前馈补偿功能;   (3)具有逐周限流功能;   (4)振荡器频率精确可控,最高工作频率250KHz;   (
[电源管理]
混合频率模式绿色PWM控制器MC44603在<font color='red'>开关电源</font>中的应用
开关电源输入EMI滤波器的设计与仿真
摘要: 开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 关键词: 开关电源;EMI滤波器;三端电容器;插入损耗 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设
[模拟电子]
<font color='red'>开关电源</font>输入EMI滤波器的设计与仿真
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved