混合频率模式绿色PWM控制器MC44603在开关电源中的应用

最新更新时间:2012-03-15来源: 电源在线网关键字:混合频率  脉宽调制  开关电源 手机看文章 扫描二维码
随时随地手机看文章
1. 引言

  MC44603是美国安森美半导体公司(On Semiconductor)推出的增强型高性能PWM控制器,适用于电流模式或电压模式控制的离线式和DC-DC变换器。该控制器最大的特点是能够在变换器输出过载、欠载、短路等故障状态下自动变换工作模式。MC44603既可以工作在非连续模式下,也可以工作在连续模式下。下面对MC44603的特点、工作原理以及在开关电源中的典型应用进行介绍。

2 特点和引脚说明

2.1 特点

  MC44603具有以下特点:
  (1)提供两种控制模式:电流模式和电压模式;
  (2)内置前馈补偿功能;
  (3)具有逐周限流功能;
  (4)振荡器频率精确可控,最高工作频率250KHz;
  (5)基准电流外部编程可控;
  (6)次级侧或初级侧检测;
  (7)具有同步功能;
  (8)大电流图腾柱式输出;
  (9)具有欠压锁定功能;
  (10)具有过压保护功能;
  (11)具有振荡器引脚短路保护功能;
  (12)监控功能编程可控;
  (13)具有软启动功能;
  (14)最大占空比可精确设定;
  (15)具有祛磁保护(零电流检测)功能;
  (16)内置可调精密基准电源;
  (17)启动电流和工作电流低;
  (18)待机工作模式编程可控;
  (19)在待机工作模式下,工作频率受控下降;
  (20)低dv/dt,低EMI。

2.2 引脚说明


  MC44603采用PDIP -16和SOP-16L两种封装形式,如图1所示,其引脚功能简介如下:
  ·VCC(引脚1):偏置电源输入端,电压范围为9.0V-14.5V。
  ·VC(引脚2):输出级偏置电压接入端。 
  ·Output(引脚3):输出端。峰值电流750mA,可驱动功率MOSFET和双极性晶体管。该端与引脚4之间须加入一只肖特基二极管,如IN5819。
  ·Gnd(引脚4):信号地。
  ·Foldback Input(引脚5):过载限流保护检测信号输入端。该端通过外接电阻分压器与检测偏置电源输入端(引脚1)相连,构成控制系统环路,可以实现平滑启动及过载保护。注意:该端输入电压信号应限制在1V以内,超过1V,该端将失效。
  ·Overvoltage Protection(OVP)(引脚6):过压保护信号输入端。如果该端上的电压超过17V,控制器的输出将被禁止,并进入重启动过程。过压保护阈值的大小编程可控。
  ·Current Sense Input(引脚7):电流检测信号输入端。该端通过电流检测电阻与功率MOSFET的源极相连。在电流工作模式下,PWM锁存器根据该端信号对输出信号进行控制。
  ·Demag Detection(引脚8):祛磁检测信号输入端。该端通过一电阻与变压器辅助绕组相连。该端信号显示出反激变换器的状态。如果将该端与引脚4直接接在一起,祛磁检测功能被禁止。
  ·Sync Input(引脚9):同步信号输入端。在该端输入同步脉冲信号,可实现控制器的外同步。如果无需同步,该端须直接接地。
  ·CT(引脚10):振荡器定时电容接入端。
  ·Soft-Start/DMAX/Voltage Mode(引脚11):软启动/最大占空比设置/电压控制模式信号输入端。该端接软启动电容。如果需要控制占空比,可在该端接入特定的阻容网络或电压源。如果将该端与引脚4直接相连,控制器将被关断。
  ·RPOWER Standby(引脚12):降频工作模式控制信号输入端。输入该端的电压信号决定了控制器是否需要转入降频工作模式,如待机模式。
  ·Error Amp Output(引脚13):误差放大器输出端。该端用于实现环路补偿。
  ·Voltage Feedback Input(引脚14):电压反馈信号输入端。该端为误差放大器反相输入端,可通过光耦反馈环路与变换器输出端相连。
  ·RFrequency Standby(引脚15):降频编程控制信号输入端。该端上的外接电阻用于确定降频工作模式的工作频率的大小。
  ·Rref(引脚16):内部基准电流设置端。该端上的外接电阻取值范围为5 kΩ~25 kΩ。

3 工作原理
  MC44603是混合频率模式PWM控制器,可工作在定频、变频及待机模式,其内部集成了精密基准电源、高频振荡器、误差放大器、欠压锁定电路、祛磁检测电路、软启动电路、过压保护电路、过载保护电路等,其内部原理框图如图2所示。


[page]  MC44603中误差放大器的典型直流电压增益为70dB,其非反相输入端与内部2.5V基准电压相连,变换器的输出电压经检测电阻分压后与误差放大器的反相输入端相连。误差放大器的输出端外接环路补偿电路后可以实现对误差放大器的补偿,如图3所示。
MC44603既可以采用电流模式控制,也可以采用电压模式控制。在电流工作模式下,MC44603主要通过电流检测比较器实现对峰值电感电流的控制。在每个工作周期内,输出开关管在峰值电感电流达到误差放大器输出信号设定的阈值时截止。这样就实现了误差信号对电感峰值电流的逐周控制。
  电感电流信号通过与开关管串联的电流检测电阻RS转化为电压信号。该电压信号输入电流检测比较器输入端,而后与误差放大器输出信号设定的阈值相比较。在正常工作状态下,峰值电感电流主要由误差放大器输出端(引脚13)上的电压控制,如下式所示。



图3 MC44603原理框图

  由于电流检测比较器的阈值内置为1.0V,因此峰值电感电流最大值可以用下式计算得到:

  MC44603内置的振荡器是一个精确的锯齿波发生器,具有同步功能。在正常工作模式下,振荡器的输出电压将在1.6V至3.6V之间变化。对定时电容CT的充放电主要是通过MC44603内部的两个电流源,ICharge和IDischarge,实现的。实际上,由于定时电容CT与ICharge在任何时候都是相连的,为了保证定时电容可靠放电,放电电流必须要高于充电电流,如图4所示。


图4 振荡器简化结构图

  锯齿波主要是由两个比较器实现的。这两个比较器将CT上的电压与振荡器输出信号的波谷(1.6V)和波峰(2.6V)相比较。锁存器将记住振荡器的工作状态。
  MC44603的最大占空比为80%,并且只有在振荡器定时电容充电过程中才允许开关管导通。这样,振荡器的充电时间和放电时间的大小由下式决定:


  其中:
  Tcharge为振荡器充电时间;△V是振荡器输出信号的峰-峰值;Icharge为振荡器充电电流;
  Tdischarge为振荡器放电时间;Idischarge为振荡器放电电流。
  MC44603内部的同步电路包含两个比较器。来自外部的同步信号,经过这两个比较器,在与0.7V 和3.7V电压相比较后送入振荡器。如果不需要同步功能,应当将引脚9接地。

图5 祛磁电路原理图

  在反激变换器中,主要依靠辅助绕组上的电压来监测变压器磁芯的状态,以防止其饱和。辅助绕组上的电压具有以下特点:(1)在开关管导通时,为负;(2)在开关管截止时,为正;(3)在死区时间内,为零,但通常伴有振铃。MC44603中的祛磁电路正是根据上述原理对辅助绕组的电压进行监测。将引脚8接地可以禁止祛磁功能。祛磁电路原理图如图5所示,祛磁检测工作波形图如图6所示。从图中可以看出,在控制器内部,祛磁比较器的非反相输入端增加了一只箝位二极管D以及反相有源箝位电路。另外,还增加了祛磁锁存电路,其作用是当祛磁检测信号输入端(引脚8)上的电压低于65mV以及新的重启动过程开始时,祛磁电路输出保持低电平。这样作的目的是为了避免引脚8上的振铃信号对祛磁检测产生影响。祛磁电路的输出信号直接与控制器的输出端相连,能够在祛磁检测过程中禁止控制器的输出。


图6 祛磁检测工作波形图

  [page]借助MC44603的最大占空比和软启动控制功能,可以将最大占空比限制在80%以下。由于MC44603引脚11与其内置电流源相连,该引脚上的电压可方便的通过外接电阻进行设置。在引脚11上外接一只电容,就可以实现软启动功能。最大占空比和软启动控制电路原理图如图7所示,最大占空比控制波形图如图8所示。


图7 最大占空比和软启动控制



图8 最大占空比控制波形

  引脚11与控制器内置的0.4IREF的电流源相连,通过外接电阻可十分方便的实现对该端电压的控制。另外,该端外接的软启动电容在VCC低于9.0V时开始放电。如果该端没有外接元件,该端内部的齐纳二极管将对该端电压进行箝位。由于齐纳二极管的箝位电压高于振荡器输出信号的峰值,因此软启动和最大占空比控制功能被禁止。
  过载限流保护检测信号输入端(引脚5)用于实现过载保护功能。随着变换器负载的不断增大,变换器所需的峰值电流也就不断增大,过载限流保护检测信号输入端上的电压也随之升高,直至达到其1.0V的最大值。如果负载持续增大,系统就无法提供足够的能量以保持输出电压的稳定。为了限制最大峰值电流,引脚5上的输入电压也随输出电压的下降而下降。限流过载保护特性(foldback characteristic)如图9所示。


图9限流过载保护特性

 [page] 在MC44603的过压保护电路中包含一个延迟锁存器,其延迟时间为2μs。这样,当过压状态持续时间超过2μs,延迟锁存器的输出将为高电平,直到VREF被禁止。如果过压状态持续时间超过2μs,控制器的输出将被禁止,直到VCC断开后又重新恢复。当过压比较器的参考电压Vref开始逐渐恢复时,过压保护状态还将继续持续5μs的时间,直到Vref完全恢复,并进入稳定状态,此时VCC才重新恢复正常供电。过压保护控制电路原理图如图10所示。在过压保护信号输入端(引脚6)增加一只外接电阻,可以实现对VCC电平的调节。


图10 过压保护电路原理图

  在欠压锁定电路中,Vref和Iref由引脚16上的接地电阻Rref决定,如图11所示。而引脚15上的接地电阻RF Stby则用于固定待机频率。


图11 欠压锁定电路原理图


4.典型应用

4.1 125W离线式反激变换器

  采用MC44603控制的125W离线式反激变换器如图12所示。该变换器中的开关管采用功率MOSFET,其输入电压范围为185VAC~270VAC,工作频率20KHz,效率85%,待机功耗2.46W。

4.2 250W离线式反激变换器

  采用MC44603控制的250W离线式反激变换器如图13所示。该变换器中的开关管采用双极性晶体管,其输入电压范围为185VAC~270VAC,工作频率20KHz,效率81%,待机功耗3.3W。

5. 小结

  混合频率模式绿色PWM控制器MC44603可以在变换器输出过载、欠载、短路等故障状态下自动变换工作模式,极大地提高了开关模式变换器设计的灵活性,是电流模式或电压模式控制的中、小功率离线式和DC-DC变换器的理想选择。



关键字:混合频率  脉宽调制  开关电源 编辑:冰封 引用地址:混合频率模式绿色PWM控制器MC44603在开关电源中的应用

上一篇:符合待机能耗法规的PWM控制器SG6840/SG6841应用
下一篇:新型CoolSET系列功率因数控制器ICE1PD265G

推荐阅读最新更新时间:2023-10-18 16:31

为便携设备供电的创新型双输出LDO电源解决方案
引言 在现代应用中,传统的低压降稳压器(LDO)正逐渐被开关电 源(SMPS)所取代。虽然LDO是一个成本低廉而且强固耐用的电源解决方案,但是它耗电很大。越来越多的便携设备厂商,像数码相机、手机、PDA制造 商,都在研究用效率更高的解决方案取代LDO的可行性。开关解决方案的大小,即电源的物理尺寸,通常是这些厂商无法逾越的障碍。 STw4141是一个创新的开关电源,只使用一个外接线圈就能产生两个独立的输出电压。因为其内在的开关特性,这个芯片的效率很高,而且所需的外部组件数量极少。该产品的效率可以与两个独立的开关电源媲美,尺寸相当于两个独立的LDO电源。因此,能够取代便携设备中的线性电源,或者缩减开关稳压器的物理尺寸和成本。
[嵌入式]
开关电源的基本组成及工作原理与常见故障维修
一电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二.开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1. 主电路 冲击电流限幅:限
[电源管理]
<font color='red'>开关电源</font>的基本组成及工作原理与常见故障维修
工业开关电源竞争激烈 模块电源抢占市场主导
目前,行业内对工业 开关电源 模块范围的界定并不一致,对开关电源的认识也不尽相同。然而,开关电源凭借着高效节能、体积小、重量轻等优点在工业领域获得了广泛的应用,已成为工业领域重要的基础产品。目前大陆工业开关电源模块市场的主要企业多数是在20世纪90年代进入大陆市场,同时在设立工业开关电源模块生产工厂的外资品牌数量也逐渐增多,电源市场竞争激烈。 虽然金融危机对工业开关电源模块市场造成了比较大的影响,但下游应用企业产业升级、新兴行业需求的带动以及国家政策的扶持等因素对大陆电源市场的发展起了积极的推动作用。因此,随着金融危机的缓解,大陆工业开关电源市场还会呈现较快的发展态势。 工业开关电源市场集中度高 工业开关电源模块市场集中度较高,
[电源管理]
基于UC3846的全桥开关电源的设计
本文所设计的全桥拓扑的控制电路主要包括控制器、保护电路、电流反馈、电压反馈、驱动电路和辅助电源等。控制电路是开关电源的核心部分,它设计好坏对于开关电源的性能至关重要,电源的很多指标如稳压恒流精度、紋波大小、输入输出特性都与控制电路息息相关,同时由于主电路是全桥拓扑,在对控制电路进行设计时要釆取相应措施防止直通现象发生。下面将对控制电路各部分功能电路进行具体的设计和介绍。 电流控制型芯片简介 采用UC3846作为控制芯片。该芯片采用大电流图腾柱式双端输出,输出峰值电流可达500mA,能直接驱动场效应管,内置精密带隙可调基准电压,高频振荡器,误差放大器,差动电流检测放大器,欠电压锁定电路以及开机软启动电路,具有自动关断功能。其
[电源管理]
开关电源的软起动电路
  1 引言    开关电源 的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的 软起动电路 ,以保证开关电源正常而可靠的运行。 图1 合闸瞬间滤波电容电流波形   2 常用软起动电路   (1)采用功率 热敏电阻 电路  
[电源管理]
<font color='red'>开关电源</font>的软起动电路
DC/DC开关电源模块并联供电系统均流控制研究
    大功率电源系统需要用单个大功率电源或者多个开关电源并联来提供,但是单个的大功率电源在设计和制造中存在很大的困难,成本也较高,同时可靠性和稳定性也难以保障。多个开关电源的并联系统能够很好地克服这些缺点,并具备单个电源所不具备的优点:大容量、高效率、高可靠性、冗余特性、模块化和成本低 。并联系统中,每个变换器只处理较小功率,不但降低了应力,还可以应用冗余技术,提高系统可靠性。采用冗余技术,还可以实现热更换,即在保证系统不间断供电情况下,更换系统的实效模块。由于以上原因,以及大功率负载需求和分布式电源系统的发展要求,开关电源并联技术的重要性日益增加。但是并联开关变换器模块间输出特性存在差异,致使各个模块之间的输出电流不一致,这样
[电源管理]
DC/DC<font color='red'>开关电源</font>模块并联供电系统均流控制研究
基于UC3846的新型开关电源的设计
引言 近年来,随着航空、航天和计算机事业的发展,对电源在体积、重量和效率等方面提出了越来越高的要求。开关电源就是在这种情况下发展起来的一种小型电源。它具有体积小、重量轻、频率高、成本低、效率高等一系列优点。同时,由于它的线路简单,可靠性高,而被广泛地应用于航空、航天和电子计算机等方面。本文设计了一个由UC3846产生PWM进行脉宽调制的移相全桥开关电源。 1 开关电源主电路的设计 在主电路中采用了移相全桥软开关电路,如图1所示。 在此电路中,输入为AC220V电压,经过二极管整流桥把交流电变成直流电,为了消除此直流电压的脉动,在设计时采用了π型滤波电路。后接一个移相全桥软开关电路,使功率管实现零电压零电流开通和
[电源管理]
用UC3842设计开关电源的几个技巧及问题归纳
用UC3842做的开关电源的典型电路见图1。      过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hiccup)保护。   在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不
[电源管理]
用UC3842设计<font color='red'>开关电源</font>的几个技巧及问题归纳
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved