CMOS与CCD图像传感器特性对比分析

最新更新时间:2012-07-19来源: 21ic关键字:CMOS  CCD图像  传感器特性 手机看文章 扫描二维码
随时随地手机看文章

CCD(Charge Coupled Device)图像传感器(以下简称CCD)和CMOS图像传感器(CMOS Image Sensor以下简称CIS)的主要区别是由感光单元及读出电路结构不同而导致制造工艺的不同。CCD感光单元实现光电转换后,以电荷的方式存贮并以电荷转移的方式顺序输出,需要专用的工艺制程实现;CIS图像感光单元为光电二极管,可在通用CMOS集成电路工艺制程中实现,除此之外还可将图像处理电路集成,实现更高的集成度和更低的功耗。


目前CCD几乎被日系厂商垄断,只有少数几个厂商例如索尼、夏普、松下、富士、东芝等掌握这种技术。CIS是90年代兴起的新技术,掌握该技术的公司较多,美国有OmniVision,Aptina;欧洲有ST;韩国的三星,SiliconFile,Hynix等;日本的SONY,东芝等;中国台湾的晶像;大陆地区的比亚迪,格科微等公司。由于CCD技术出现早,相对成熟,前期占据了绝大部分的高端市场。早期CIS与CCD相比,仅功耗与成本优势明显,因此多用于手机,PC Camera等便携产品。随着CIS技术的不断进步,性能不断提升;而CCD技术提升空间有限,进步缓慢。目前CIS不仅占据几乎全部的便携设备市场,部分高端DSC(Digital Still Camera)市场,更是向CCD传统优势市场——监控市场发起冲击。下面就监控专用CIS与传统CCD进行综合对比。


一、灵敏度(Responsivity)


作为图像传感器最重要的技术指标之一,灵敏度是衡量图像传感器对于光线的敏感程度。监控专用CIS的灵敏度高达10V/Lux-sec以上,高过大部分的CCD传感器(Sharp RJ2311C灵敏度为3.2V/ Lux-sec)。灵敏度指标主要体现在画质的亮度和低光效果上,灵敏度越高画面越清晰。虽然CIS的最小感光度(Minimum Detectable Light)指标低于CCD,但可以满足绝大部分监控应用场合。


二、动态范围(Dynamic Range)


动态范围是衡量图像传感器对于明暗光线差别较大的场景下的表现。在实际应用中,体现在图像传感器是否可以在一幅图像中既可以清晰显示较暗的场景,又可以清晰显示光线充足的场景。尤其是当Camera对准窗口时,既要能看到窗内的景象,又要能看到窗外的场景,而不出现“过曝”现象。动态范围越高,表明在明暗差别较大的场景下,图像传感器表现越好。目前高端CIS可实现高达100dB以上的动态范围,而常见CCD的动态范围基本在60dB左右。从动态范围上讲,CIS略胜一筹。


三、集成度(Integration)


由于CIS在标准CMOS工艺制程下制造,可将读出电路(包含相关双采样CDS,自动增益放大器AGC等),模数转换电路(ADC),图像信号处理(ISP),电视信号编码电路(TV-Encoder)等全部集成于单芯片中。而CCD由于制造工艺特殊且复杂,处理电路需单独存在,配套使用,因此在应用上有“CCD套片”的叫法。“CCD套片”包含CCD图像传感器,V-Driver(时序控制/CCD多路电源,逐步被集成与CDS/AGC电路中),CDS/AGC(对应于CIS的读出电路),DSP(对应于CIS的ISP)四部分。如果采用CIS设计CCTV Camera方案,只需要一颗芯片,一颗LDO和少量阻容元件,全部设计可在一块两面SMD 32mm*32mm的PCB板上完成;如果采用CCD套片,则最少需要一块两面SMD 38mm*38mm的PCB板才能容纳所有器件。通常采用两块PCB板,以避免由PCB板元件过密带来的噪声问题。显而易见,基于CIS的Camera方案提供了更高的集成度,无论是PCB板设计难度,还是功耗/成本都大大下降。


四、画质(Picture Quality)


除受图像传感器本身的物理特性影响外,图像信号处理技术从某种程度上决定了图像质量。之所以人们认为CIS效果不如CCD,一方面是由于长期以来形成的思维定势,更主要是因为CCD拥有独立的DSP,具有强大的图像处理功能,实际上图像传感物理部分已无差别。随着CIS内置ISP算法的不断进步,CIS画质已大幅提升。正常光线下,CIS与CCD画质已无差别,甚至已超越中低端CCD画质。但CIS的ISP集成在芯片内部,其性能与独立的DSP尚有差距,也造就了短期内CIS尚无法达到高端CCD的效果。


五、工作温度(Operating Temperature)


目前CIS已被广泛应用于汽车监控(含可视倒车等),由于汽车电子的苛刻要求,用于汽车监控的CIS产品要求在-40℃-105℃正常工作。而CCD由于传感器部件对热敏感,高于60℃将无法正常工作(低于-20℃也无法正常工作),因此高端摄像机都需内置散热系统。相对而言,基于CIS的Camera设计将更加简单,稳定。


六、接口(Interface)


由于CIS集成度优势,使得CIS相比于CCD拥有更丰富的接口种类。目前监控用CIS不仅能够输出RGB,YUV,CCIR656等数字信号,而且可以输出PAL/NTSC制式的模拟电视信号,既满足传统的CCTV应用,也能满足诸如IP Camera等数字应用。此外CIS还提供I2C控制接口,便于外部MCU对CIS的控制。CCD图像传感器本身只能输出模拟电信号,如果要增加各种接口,就需要“套片”配合使用。


比亚迪监控专用CIS产品在现有接口基础上,创新性提供了Master I2C接口和模拟差分电视信号接口。Master I2C接口使客户将调试最佳图像效果参数存于I2C 接口EEROM中,等CIS上电则读取EEROM中的参数并自行配置到最佳效果。针对越来越多的客户采用非屏蔽双绞线传输模拟视频信号,比亚迪CIS提供了差分输出接口,无须外接Balun。


七、低功耗,低成本(Low Power Consumption,Low Cost)


低功耗与低成本是CIS天生的优势。得益于CIS的高集成度,即使CIS性能大幅提升,其功耗仍处于较低的水平,通常低于350mW(比亚迪CIS更是低至180mW);而CCD图像传感器本身功耗都高于200mW,CCD套片的功耗更高达2W以上,10倍于CIS。因此,CIS被广泛应用于对功耗敏感的场合,如便携设备,Wireless IP Camera,Baby Monitor,视频对讲等。


CCD制造工艺复杂而且成品率较低,CCD图像传感器本身的价格已经高于CIS单芯片价格,何况加上辅助的套片价格。对于常见的CCTV Camera方案,采用CIS方案成本不足低端CCD套片的价格的50%。


以上可见,与CCD相比,CIS不仅拥有突出的性价比优势,其低功耗优势更是CCD所无法比拟的,可以完全替换中低端CCD产品。由于CIS相关技术仍处于发展阶段,现阶段CIS主要可用于IP Camera,常规视频监控,楼宇可视对讲,视频会议系统,汽车监控,传统的CCTV监控等领域。

关键字:CMOS  CCD图像  传感器特性 编辑:探路者 引用地址:CMOS与CCD图像传感器特性对比分析

上一篇:光耦脉冲电路图原理介绍及其应用
下一篇:半导体光电器件种类介绍及其工作原理分析

推荐阅读最新更新时间:2023-10-17 14:58

亚微米CMOS电路中VDD-VSSESD保护结构设计
3 仿真分析及具体设计结果   3.1 仿真分析   在亚微米的ESD结构的设计中,一种常见的具体的ESD瞬态检测电压如图2 VDD-VSS间的电压钳位结构。其原理如下:   主要利用结构中的RC延迟作用,一般T=RC被设计为100ns-1000ns之间,而ESD脉冲通常为纳秒级,其上升时间为十几纳秒。初始状态,IC处于悬空状态下,当个正ESD电压出现在VDD电源线上,而VSS相对为0时,Vx通过RC开始充电,由于其充电常数T比VDD的上升时间大的多,致使Vx无法跟随VDD的变化,从而使P0管打开,N0管关闭,Vg电压迅速上升,N1大管开启,从而提供了一个从VDD到VSS的低阻抗大电流泄放通道并对内部的VDD
[模拟电子]
亚微米<font color='red'>CMOS</font>电路中VDD-VSSESD保护结构设计
年增长15%,汽车将会是CMOS未来五年最快增长点!
集微网消息,IC Insights最新公布的报告指出,CMOS图像传感器在汽车、安防、机器视觉、医疗、虚拟现实以及其他新领域的应用抵消了智能手机市场缓慢增长带来的影响。 随着数码相机在汽车、机器视觉、人脸识别和安防系统中的应用越来越广泛,这些领域正在成为仅次于智能手机摄像头的市场驱动力。IC Insights的报告指出,以上所说的这些领域,今年将推动CMOS图像传感器销售额增长10%,达到137亿美元,为历史第八高水平。 报告同时指出,直到2022年,CMOS图像传感器市场都将会继续保持创纪录的年销售额。(图一) 图一 报告认为,随着嵌入式数字成像能力扩展到更加广泛的应用市场和系统当中,CMOS图像传感器将会抢夺更多电耦合器件
[手机便携]
俄罗斯发现铜纳米光子元件可实现低成本的CMOS兼容
莫斯科物理技术研究所(MIPT)的研究人员表明,铜纳米光子元件可以在光子器件成功地运行;以前人们认为只有金和银元件具有这些所需的性能。这意味着,基于光的计算机比以前更接近现实,因为铜比金银更便宜;另外,铜元件可以很容易地使用行业标准的CMOS制造工艺在集成电路中实现。 这些研究还提供了实际使用的铜纳米光子和等离子体元件,这些在不久的将来将被用来制造发光二极管、纳米激光器、高灵敏度传感器及移动设备转换器,以及具有数万个核心显卡的高性能光电处理器、个人计算机和超级计算机。 为什么选择等离子体? 光的衍射极限将光子元件的最小尺寸限制在约一个波长(1 m)。可以通过使用金属电介质结构克服衍射极限的基本
[传感器]
新方法成就超低功率的CMOS图像传感器
美国罗彻斯特大学的两名研究人员开发出了一种超低功耗的CMOS图像传感器方法,从而将进一步推动CMOS图像传感器在便携与远程无线设备中的应用。他们在设计上获得的进步来源于两个相互独立的概念:一个是降低芯片上进行模数转换操作的复杂性;而另一个则针对像素阵列采用新的几何形状,从而消除了数据压缩期间的浮点乘法运算。 采用第一种技巧的原型成像器已被证明每像素会消耗0.88纳瓦(nw)的功率。研究人员称,这种功耗比目前的有源像素传感器设计要低50倍。研究人员通过在芯片外围较远的地方设置一些模数操作,就能够减少像素点处的晶体管数量。 “当器件采集光信号时,电子元件是关闭的。”罗彻斯特大学的研究员Mark Bocko介绍,“比较器受时
[焦点新闻]
XC6419低压差CMOS双路LDO电压调整器芯片
XC6419系列是实现了高精度, 低噪声, 高纹波抑制, 低压差CMOS工艺的双路LDO电压调整器芯片。   内部由基准电压源, 误差放大器, 驱动用晶体管, 控制电流电路, 相位补偿电路等构成。   各个电压调整器的输出电压可由激光微调技术在内部0.8~5.0V的范围内,间隔0.05V进行调整。   可由EN端子停止各个电压调整器的输出状态,使其成待机状态。   此外,XC6419系列在带机状态时,VOUT端子和VSS端子之间的内部开关可把用于稳定输出的电容(CL)中储存的电荷放电。   这个放电功能可使VOUT端子高速地返回VSS电平。   用于稳定输出的电容(CL)也能与陶瓷电容等ESR低的电
[模拟电子]
XC6419低压差<font color='red'>CMOS</font>双路LDO电压调整器芯片
L-系列CMOS自扫描光电二极管阵列
光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。
[模拟电子]
TI 推出支持大输出电流低温度漂移的CMOS 电压基准产品系列
全面优化高分辨率 ADC 性能 2007 年 8 月 15 日,北京讯 日前,德州仪器 (TI) 宣布推出支持大输出电流的 3ppm/℃ 最大温度漂移、高精度、低成本 CMOS 电压基准产品系列 —— REF50xx。该系列产品提供的超高精度与系统性能等级,先前只有成本高昂的掩埋齐纳技术才能提供。虽然 REF50xx 主要面向新一代工业过程控制,但是也广泛适用于多种应用,其中包括医疗仪器、高精度数据采集以及测试与测量等。(更多详情,敬请访问: http://focus.ti.com.cn/cn/docs/prod/folders/print/ref5020.html 。) REF50xx 具有 +/-10mA 的大输出
[新品]
如何用一只无缓冲CMOS六反相器做出测试仪器?
本文讨论了如何用一种六反相器IC做出四种测试件:一个有良好定义逻辑电压窗口的逻辑笔,输入阻抗约为1MΩ;一个开路测试仪,上限电阻可以从几十欧到几十兆欧;一个单脉冲或脉冲串注入器或简单的信号发生器;还有一个是高阻音频探头。使用一只4069中的六个反相门、两或三只电阻,以及少许无源元件,就可以做出这些测试仪器。 在双门构成的CMOS/TTL兼容探头中,R1至R4电阻网络对反相器输入端做偏置(图1)。由于门有高输入阻抗,因此R1至R4的值在大约100kΩ到1MΩ。探头尖的吸入/供出电流很小,因为R1至R4有高阻抗,因此,探头尖基本上不影响测试点的逻辑电平。知道了门的输入阈值电压后,就可以计算出所需要的R1至R4电阻值。 图1:在
[测试测量]
如何用一只无缓冲<font color='red'>CMOS</font>六反相器做出测试仪器?
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved