单相有源功率因数校正(APFC) 技术被广泛地应用在开关电源、变频家电等领域,在消除谐波电流污染方面起到了非常重要作用。迄今为止,出现了多种PFC 控制算法,如常规乘法器算法、电压跟随器算法、单周期控制器算法等,它们都有一定的优、缺点和不同适用范围。本文根据功率因数校正的工作原理和物理含义,推导了一种新型直接控制算法,并进行仿真分析和试验研究进行验证。如果输入电压和输出功率已知,该直接控制算法还可以进一步简化。另外,在保证良好功率因数校正的前提下,为了很好地表征各种PFC 算法的支持输出功率能力,提出了调功范围的概念。此外,随着智能电网技术、分布式发电技术的发展和应用,出现了单相标准正弦电压源、准正弦电压源、交流方波电压源以及直流电压源,为了提高这些电源的利用率和改善微网的供电状况,上述电压源都必须采取功率因数校正技术,即提出了所谓的方波交流PFC 和直流PFC 等概念。
1 单相APFC 直接控制算法的原理
传统单相有源PFC 的工作原理的实质是:在每个开关周期中,借助功率开关S1 有规律的通断过程,通过整流桥和电感L 将电源uac短接,使得电感L 储存能量,然后将全部储能或者部分储能释放到负载侧的直流电解电容,同时获得同步正弦的输入电流波形和稳定的直流输出电压。传统单相有源PFC 的控制策略是电流闭环( 内环) 和电压闭环控制( 外环),可以获得很好的控制效果。但是,对于采用模拟控制的APFC,同一套参数很难兼顾轻载与重载时校正效果。
单相交流输入电压方程为:
单位输入功率因数时输入电流方程为:
为了分析方便,近似地认为输出直流电压u0 =U0,纹波电压为零,开关周期为Ts,开关频率为fs,占空比为d,则根据BooST 型DC /DC 变换器的输出与输入电压的关系,得:
当单位输入功率因数时输入电流时,式(1) 可以改写为:
忽略高频分量时,式(2)可以近似改写为:
式(3)可以近似改写为:
式中,。
可以看出,k 为整流桥后级等效电阻的函数,成正比关系,即与电感电流基波部分有效值( 即输入电流有效值) 成反比关系,比例系数为。理论上,k 的取值范围为k∈(0,+ ∞ )。这样,可以通过检测电感电流有效值和电网电压有效值的变化,推出Ri、k 的变化量,从而得到占空比d 的计算公式。
根据式(4),可以采用MCU 存储不同输入电压有效值时APFC 系统的占空比与电感电流有效值的关系曲线;然后,根据测量电感电流有效值来实时计算或查表计算占空比。
对于分布式发电或数码发电等应用,由于交流电压为高质量的交流正弦波电压、交流方波电压或直流电压,即APFC 的输入电压稳定,通过只检测电感电流有效值,就可以直接计算占空比,此时无需检测输出电压,这就是输入交流电压与输出直流电压均不检测的APFC 的工作原理。参考单相正弦交流电源的功率因数概念,为了提高电源的利用率,输入电流波形应该与输入电压波形相似,从而提出了方波交流PFC 和直流PFC 等概念,方波交流PFC 即输入电压为交流方波电压的PFC,直流PFC 即输入电压为直流电压的PFC。
由于该算法能够直接计算PFC 的占空比,因此,具有校正效果好、支持功率范围宽等优点。表面看来,该控制算法由于检测电感电流有效值,存在滞后现象。为了提高快速性和保持稳定性,可以采用滑动平均滤波算法。为了表征APFC 系统支持输出功率的能力,提出调功范围概念,即保证良好功率因数校正时,APFC 系统能够支持的最大输出功率与最小输出功率之比。
当输出电压U0设置不变,而且输入电压有效值也不变时,随着负载的增加,输出电压瞬时值有下降的趋势,输出电流会上升,电感电流瞬时值上升,此时可以减少k,增大总体占空比,结果输入电流有效值增加,输出电压恢复到设定值,获得新的稳定工作点。同理,可以分析输入电压与输出电压变化时的情况。
2 仿真验证
根据式(4),建立无输入交流电压、输出直流电压检测的单相APFC 的Simulink 仿真平台,如图1、图2 所示。输入电压为额定AC 220 V,设定输出电压为DC 365 V,升压电感取值为1. 0 mH,直流电解电容为5 600 F,交流吸收电容为2. 0 F,分流电阻为5 mΩ,负载为设计的可调电子负载。
图1 单相交流正弦APFC 的仿真电路。
图2 单相交流方波APFC 的仿真电路。
仿真结果表明了有关理论分析的正确性,功率因数校正效果非常良好,表现出很宽的调功范围。
交流正弦电压输入时,输出功率为10 kW时,输入电压与输入电流波形如图3 所示。此时,k = 0. 85,输出直流电压平均值为355 V,纹波电压峰峰值为15 V。
图3 重载下输入电压与输入电流的仿真波形(10 kW)。
交流正弦电压输入时,输出功率为100 W时,输入电压与输入电流波形如图4 所示。此时,k = 9. 5,输出直流电压平均值为365 V,纹波电压峰峰值为2 V。
图4 超轻载下输入电压与输入电流的仿真波形(100 W)。
交流方波电压输入时,输出功率为6. 6 kW时,输入电压与输入电流波形如图5 所示。
图5 重载下输入电压与输入电流的仿真波形(6. 6 kW)。
3 试验验证
设计制作了6. 6 kW 的单相交流正弦电压输入的数字有源PFC 的功率模块,整流桥采用2 只25 A/100 C 扁型整流桥并联,功率开关采用单只80 A/100 C 的SGL160N60UF,FRD 采用单只40 A/100 C 的FFAF40U60DN,升压电感选择40 A的1. 9 mH 硅钢电感,交流吸收电容选择3. 3 F /275VAC 的无感电容,电解电容选择6 只680 F /400 VAC 的电解电容并联,核心控制器选择NEC 1 6 bit PD1 8 F 1 2 0 1 ,固定开关频率为20 kHz。
经过大量的硬件与软件调试,最终实现了输入交流电压150 ~ 265 V、输出直流电压平均值365 V、适合输入频率50 Hz /60 Hz 的数字PFC 功率模块,最小输入电流低于0. 5 Arms、最大输出直流电流接近40 Arms 的情况下均能获得接近1的输入功率因数,谐波电流分布符合标准IEC61000-3-2: 2000 和IEC 61000-3-12: 2005。其中,输入电压AC 220 V、输入电流有效值33. 23 A、电网频率50 Hz 时输入电压与输入电流波形如图6所示。
图6 输入电压与输入电流的实测波形。
4 结语
提出了单相有源PFC 的直接控制算法,分析了其工作原理,特征如下:无需输入电压的检测,校正效果良好、设计简单,便于数字实现;同时,能够支持更大功率输出,具有良好的应用前景。当已知输入电压、输出功率和效率的情况下,无需输出直流电压检测。为了描述问题方便,提出了功率因数校正器的调功范围概念,同时提出了正弦交流PFC、方波交流PFC 和直流PFC 等概念。
上一篇:电网低压配电远程自动监控系统
下一篇:MAX9951/MAX9952 特性、应用、数据资料下载
推荐阅读最新更新时间:2023-10-17 14:58
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况